Capitolul 1

Elemente de topologie in R¥

1.1 Structura de spatiu vectorial pe R”

Vom nota cu I (respectiv ) planul (spatiul cu trei dimensiuni) orientat si
cu
R*=R xR ={(z,y): 7,y € R} = {(21,72) : 71,72 € R};
R3 =RxRxR= {(x,y,z) STy, 2 € R} = {($1,$2,1‘3) DT, T2, T3 € R}
Aplicatiile
o R? = 11, (2, y) = Pla,y) €11

@3:]1%3_)27%03(377:%2) :P(l',y,Z) SY

sint bijectii. Vom identifica iIn mod curent un punct din plan (spatiu) cu o
pereche ordonata (triplet ordonat) din R? (R?).

VA C R*(R?),0s(A)(p3(A)) se numeste imaginea plani (in spatiu) a
multimii A.

1.1.1 Exemple 1. Fie A = {(2,9) € R? : 2* < »?}. Imaginea plana a
multimii A este portiunea hasurata din Figura 1 de mai jos.
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2. Multimea A = {(z,y,2) € R® : 22 4+ y*> — 2% = 1} are drept imagine
un hiperboloid de rotatie din R? a carui imagine este schitata in Figura 2 de
mai sus.

Distanta dintre doua puncte

Fie (2,9, 2), (u,v,w) € R? si fie d distanta dintre aceste doud puncte (vezi
Figura 3); atunci

d= /B +(z—y? = /@ —uP + (y— o) + (z — w)’.

In cazul particular al planului (deci daca z = 0), se obtine
d = /(x —u)2+ (y—v)? iar pe dreaptd d = |z — u| si deci se regasesc
formulele cunoscute pentru distanta dintre doua puncte in plan si pe dreapta.

A
U, v, W)
0
i y
Figura 3

Inspirati de aceste cazuri particulare vom introduce o distanta intre doua
puncte arbitrare din RF.

1.1.2 Definitie. Fie x = (x1,29,...,2%),y = (Y1, Y2, ... yx) € R¥; definim
distanta dintre punctele x sty ca fiind numarul pozitiv

d(x,y) = V/(x1 — y1)2 + (22 — y2)2 + ... + (T — yr)2.



4 CAPITOLUL 1. ELEMENTE DE TOPOLOGIE iN RF

Distanta dintre punctele spatiului R¥ are urmé#toarele proprietitile.

1.1.3 Teorema.
1). dx,y) = 0ex=Yy;
2). d(x,y) = d(y,x),vx,y € R¥;
3). d(x,z) < d(x,z)+d(y,z),Vx,y,z c RF.

Demonstratie. Vom demonstra numai proprietatea 3). Fie x = (x1, ..., xy),
y=W1,y)z=(21,...,21) € R*: atunci, utilizind inegalitatea lui Cauchy-
Schwarz-Buniakowski (3>°; a2 - >0 52 > (30, aif3;)?) obtinem

[d(x,2) +d(y, )" =

= Z(xz —z) + Z(yz — )" +2 Z(% —2)%- Z(yz —2z)? >
2D (wi—z+ Y (= =) +2: ) (e = z) (i — =) =
1= ’L—k 1=
= Z(xz - yz)2 = dz(X, Y)'

1.1.4 Definitie. O functie d care la orice doua puncte x,y ale unei multims
X asociaza un numar pozitiv d(x,y) si care verifica proprietatile 1), 2) si 3)
din teorema precedenta se numeste metrica pe X. Metrica definita in 1.1.2
se numeste metrica euclidiana pe R”.

In R? adunarea a dou# puncte x = (x1,22) sty = (y1,y2) se face dupa
“regula paralelogramului” ilustrata mai jos:

T2
r+vy
0,0}/
T

Suma este X +y = (z1 + y1,22 + y2); vom defini dupa acelagi model
adunarea in R”.
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1.1.5 Definitie. Fie x = (21,22, ..., 21),y = (Y1, Y2, ..., yx) € R* sit € R;
definim adunarea prin X +y = (x1 + Y1, ..., T + Yx) §i inmulfirea cu scalari
print-x = (txry, ..., txy).

Fati de aceste doud operatii R* se organizeazi ca un spatiu vectorial real,
adica sint verificate proprietatile:

L. x+ (y+2) = (x+y)+2zVx,y, 2z € R* (asociativitatea adunarii).

2.30=(0,..,0) € R" ai. x40 = x,Vx € R* (0 se numeste element
neutru la adunare;

3. Vx € RF,3(—x) € R¥ ai. x+ (—x) = 0 (—x se numeste opusul
elementului x).

4. x+y=y+x,Vx,ycRF (comutativitatea adunarii).

Din proprietatile 1. — 4. deducem ca (R¥, +) este un grup comutativ.

5.t-(x+y)=t-x+t-y,Vx,y€R" VtcR.

6. (t+s)-x=t-x+s5-x,Vt,5s € R, ¥x € R*.

7. (t-s)-x=1t-(s-x),Vt,s € R ¥x € R".

8. 1-x=x,Vx e R

1.1.6 Definitie. V A CR* V x e R*,V t € R definim
x+ A={x+y:y € A} (translata mulfimii A cu vectorul x) si
t-A={t-x:xe€ A}

1.1.7 Definitie. Fie x = (z1, ..., ;) € R*; numdrul pozitiv

x| = d(x,0) =

se numeste norma elementului x.

1.1.8 Propozitie. Aplicatia || - || : R* — R este o normd pe R* adicd
verifica conditiile:

1 ||x[|=0& x=0.

2. ||t-x|| = [t| - ||x]|, ¥t € R, ¥x € R”.

3 i+ yll < Il + Iyl ¥ %,y € RY

1.1.9 Observatii. (i) Rezulta din propozitia precedents ca (R, || - ||) este
un spatiu normat real.
(i) d(x,y) = [lx = y[l.V x,y € R".
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Inegalitatea de la punctul 3) al teoremei 1.1.3 (inegalitatea triunghiului)
devine, in anumite cazuri, egalitate; prezentam in defintia urmatoare aceasta
situatie speciala.

1.1.10 Definitie. Fie x,y,z € R*(sau R?); spunem cd z este intre x §i 'y
st notam cu X —z —y situalia in care d(x,y) = d(x,z) + d(y, z).

Multimea [x,y] = {z € R® : x —z — y} se va numi segment cu capete X i
y.

Multimea [x,y) = {z € R® : x—z—y sau X—y—z} se va numi semidreapti
cu originea in X §i care trece prin'y.

Multimea (x,y) = [X,y)Uly, X) se va numi dreapta care trece prin punctele
X §y.

Definitii similare se pot da pentru segmente, semidrepte sau drepte din R?.

In propozitia urmatoare se dau caracterizari ale segmentelor, semidreptelor
si dreptelor din R3,

1.1.11 Propozitie. Fie x,y € R?; atunci:
L [xyl={1-t)x+ty:te]|0,1]}.
2. [x,y)={(1—-t)x+ty:t >0}
3. (xy)={(1—-t)x+ty:te R} ={x+1t(y —x):t € R}.
Demonstratie.
1. Fiet € [0,1] si z = (1 — ¢)x + ty; atunci d(x,z) = ||x —z|| = ||t(x —
VI = tlx =yl st dy,z) = lly — 2z = (1 -1)]x -yl de unde rezulta:
d(x,2) +d(y,z) = [x — y| = d(x,y) si deci z € [x,y].
d(x,z)

d(x,y)

Reciproc, ¥ z € [x,y], d(x,y) = d(x,2) + d(y, 2); fie t = e [0, 1].

Urmarind ca suport imaginea din Figura 4, obtinem:

€3

Figura 4
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Z3 — I3 . d(X, Z)

Ys — T3 d(x,y)
Similar, zo = (1 — t)xy + tys si 21 = (1 — t)x1 + tyy, deci z = (1 — t)x + ty.

2.z€[x,y) & zE€xy]sauy € [x,z] & It € [0,1] ai z= (1—t)x+ty
sau 3 s € [0,1] ai y = (1 — s)x + sz. Ultima egalitate se mai scrie

=t de unde z3 = x3 + tys — tog = (1 — t)x3 + tys.

z:(l—g)x—i—gyiartZE > 1. Rezulta ca z € [x,y) & It > 0 a..
z=(1—-t)x+ty.

3.ze(xy)ezexy Uly,x)©3It>0al z=(1—-1t)x+ty sau
Jds>0al z=(1-s)y+ sx; ultima egalitate se scrie z = (1 — t)x + ty
undet =1—s<1.

Exercitiu. Sa se arate ca x+ [y, z| = [x +y,x+ z] = x+ [z,y].

Vectori

Fiex,y € R* segmentul orientat Xy este segmentul [x, y] caruia i s-a asociat
o directie: de la originea x la extremitatea y. Observam ca [x,y] = [y, X]
insd Xy # yx.

Spunem ci Xy este echivalent cu uv daci existd z € R¥ ai. z+x =u si
z+y = v gi notdm aceasta cu Xy ~ uv; observim ca Xy ~ 0y — X.

~ este o relatie de echivalentd pe multimea segmentelor orientate (este
reflexiva, simetrica gi tranzitiva). O clasa de echivalenta in raport cu relatia
~ se numeste vector.

Asa cum am remarcat, vectorul generat de orice segment orientat x_ff este
de asemenea generat de segmentul orientat Oy — x care are originea in 0.
Astfel putem identifica orice element x € R¥ cu vectorul {z + 0x :z € R } =
{2z + x : z € R¥}. Acesta este un motiv in plus sd numim elementele lui R
vectori.

Conventie. In cele ce urmeazi vom nota vectorii x din R* pur si simplu
cu z, urmind s se inteleagd din context cind este vorba de vectorul z € R*
si c¢ind de numarul real x; in mod similar vectorul nul 0 va fi notat cu 0.

Un versor este un vector 2 € R¥ cu |jz|| = 1.

In cazul n = 3 versorii i = (1,0,0),j = (0,1,0),k = (0,0,1) formeaza o
baza in R®. Orice alt vector = (21, 7o, 23) € R® se exprima in mod unic in
functie de acesti versori: x =21 -i+ 22 -j+ 23 - k.

In R* versorii e; = (1,0,0,...,0,0),e3 = (0,1,0,...,0,0), ...,

e = (0,0,0,...,0,1) formeaza o bazi; orice vector z = (x4, ...,2;) € R* se
scrie in mod unic in functie de versorii bazei: © = x1-e; + ... + Ty - €.
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Ecuatia dreptei si ecuatia planului

Inspirati de propozitia 1.1.11, extindem in R* notiunile de segment, semi-
dreapta si dreapta.

1.1.12 Definitie. Fie 2° = (29,...,29),4° = (2, ..., 4)) € R*; numim:

1. segment avind drept capete punctele z° si y° multimea

[2°4°] = {2° + ¢(y° — 2°) : t € [0,1]}.

2. semidreaptd cu originea in punctul 2° si care trece prin y° multimea
[2%,9%) = {2 + t(y* —2°) : t > O}.

3. dreapta care trece prin punctele 2° si y° mulfimea

(2°,y%) = {2° + t(y° — 2°) : t € R},

Ecuatia | v = 2° + t(y°" — 2°),t € R| se numeste ecuatia vectoriald a dreptei

(2°,9%); ecuatiile scalare sau parametrice ale acestei drepte sint:

vy = 2 + 1) — a9)
= o bt —al) g

Tp = ) + t(y) — )

Daca se elimina parametru ¢, ecuatia dreptei se mai poate scrie:

Ty — ) xy— ) Ty — T S
T 5= 31 5 = .. = —7—- Se constata imediat ca, in cazul
Y1 — Y1 Y2 — Y Ye — Yi

particular n = 2, se obtine ecuatia plana a dreptei ce trece prin doua puncte,
ecuatie cunoscuta din geometria analitica plana.

Din cele de mai sus rezultd ca ecuatia unei drepte care trece prin z° si este
paraleli cu versorul u° (dreaptd ce trece deci prin 2° si prin 2° + u°) va fi

r=a2"+tu’ teR

In cazul particular n = 3 vom nota cu aq, as, a3 unghiurile facute de versorul
u® cu axele Oxy, Oxy i respectiv Ozg; atunci u® = (cos ay, cos as, cos as) si

astfel obtinem ecuatia normala a dreptei:

ZL’l—CL’? J]Q—I'g l‘g-[)&'g

coSs o COS Q9 cos oy

1.1.13 Propozitie. Fie z,y,z € R® puncte necoliniare si (z,y,z) planul
care trece prin cele trei puncte; atunci:

(x,y,z) ={te+sy+rz:t,s,re R t+s+r=1}
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Demonstratie.

Din figura de mai sus observam ca u € (z,y,2) <= Jv € (z,y), I w € (z,2)
al zu=20+TWsauu—r=v—r+w—cSu=v+w—x Fiet,s cR
al. v=z+tly—x),w=x+s(z—x). Atunciu =ty —te +x + sz — sx =
(1—t—s)x+tr+ sz .

1.1.14 Definitie. Fie z,y,z € R® trei puncte necoliniare; numim plan
care trece prin x,y, z mulfimea Il = {u =tz + sy+ (1 —s —t)z : s,t € R}.

FEcuatia acestui plan este |u =tz + sy + (1 —t — s)z, t,s € R|.

1.1.15 Exemplu.
Fie punctele necoliniare A = (a,0,0), B = (0,b,0),C = (0,0, c) € R?; ecuatia
planului care trece prin A, B si C este u = tA+ sB+ (1 —t —s)C =
(ta,0,0)+ (0, sb,0)+ (0,0, (1 —t—s)c) = (ta, sb, (1 —t—s)c). Daca notam cu
T =ta
(x,y, z) coordonatele lui u obtinem { y = sb ,t,s € R. Eliminind
z=(1—-t—9)c
parametrii ¢ si s din ecuatiile de mai sus vom ajunge la ecuatia planului prin
taieturi:
)

Triiioi=o
a b ¢

Produs scalar

Fie ¢ = (z1,29),y = (y1,52) € R? si fie § unghiul 20y; definim atunci
(x,y) = |||l - |ly|| - cosB. Observam ca dreapta care trece prin punctele 0
si x este perpendiculara pe dreapta ce trece prin 0 si y daca si numai daca
(l’, y) =0.

Asa cum putem constata din figura de mai jos, cos@ = cos (fy — 01) =
i T Y2 T Tyt T2l

Iyl A=l Dyl llell lell - Dyl

cos By cos 0y +sinfysinf; =
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X2
A

. <

0

0 fL‘l

Rezulta deci ca (x,y) = x1y1 + x2y2; acesta ne permite sa extindem acest
“produs” la R*.

1.1.16 Definitie. Fiex = (21,...,74),y = (Y1, ..., yx) € R*; numim produs
scalar (sau produs interior) al vectorilor x si y numdarul real:

k
T, y) = szyz
i=1

Vom spune ca vectorii x iy sint perpendiculari daca (x,y) = 0; vom nota
aceasta situalie cu x 1 y.

1.1.17 Observatie. Desi notatia pentru produsul scalar a vectorilor x si y
coincide cu aceea pentru dreapta care trece prin punctele x si y vom putea

sa distingem din context in ce sens este folosita.

1.1.18 Propozitie. Produsul scalar pe R are urmdtoarele proprietdti:

(z,y) = (y,2),Vz,yeR",

(tx,y) = t(:c,y),Vm,yERk,VteR,
(r+y,2) = (2,2)+(y,2),V 2,9,z € R,

(z,z) 2|2,V © € R¥,

(@l < =l - Nyl < 30l + lyl*). ¥ =,y € R?

Demonstratie. Vom demonstra numai ultima inegalitate.

Va,y€RF (x—ty,x—ty) > 0sau (y,y)-t>—2(z,y)-t+(z, ) > 0,V € R;
deci discriminantul acestui trinom de gradul doi trebuie sa fie negativ, de
unde: [(z, y)| < ||z - [yl
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Elemente de topologie in R¥

1.1 Structura de spatiu vectorial pe R”

1.1.19 Definitie. Din propozitia precedenta remarcam ca

—1§M§1,Vx,y€Rk,x7é07éy.
]| - [l

Rezultd atunci cd existd un unghi unic 6 € [0, 7| a.i.

(z,9)

cosf = )
]l - lyll

Vom spune ca 0 este unghiul dintre vectorii x si y (unghiul ;\Oy), reqasim
astfel formula din cazul k = 2:

(@,9) = ll2ll - Iyl - cos 6,V z,y € R".

1.2 Relatia de ordine pe R*

1.2.1 Definitie. Fie v = (21,...,2%),y = (y1,...,yr) € R*; spunem cd =
este mai mic decit y st notam cu x <y situatia in care Ty < Y1y ooy T < Yoo

1.2.2 Observatie. Relatia definita este reflexiva, adica:
1. x <z, Vre ]Rk,

antisimetrica, deci:

11
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2. x <ysiy < xantreneaza r =y

si tranzitiva, deci:

3. v <ysiy <z antreneaza r < z.

Aceste proprietati caracterizeaza relatile de ordine; deci “<” este o relatie
de ordine pe R*. Acesta ordine nu este totala; de
exemplu (0, 1) nu este comparabil cu (1,0) in R?.

1.2.3 Definitie. O multime A C R* este marginita superior in R* dacd
existd un majorant pentru A, deci dacd existd un element z° € RF a.i.
r<a2'VazxeA
O multime A C R¥ este marginitd inferior in R* dacd existd un mi-
norant pentru A, deci dacd existd un element 2° € R* a.i. © > 2%V z € A.
O multime este marginita daca este marginita superior si marginitda in-
ferior.

In figura de mai jos se ilustreazi o astfel de situatie in R?

2 este un majorant iar ¢ un minorant pentru multimea A.

1.2.4 Teorema. Orice mulfime nevidd i marginitd superior (mdrginita
inferior) din R* admite margine superioard (margine inferioard).

Demonstratie. Presupunem ci 2° = (29,...,29) € R* este un majorant
pentru multimea nevida A. Fie 4; = {a € R: 3z = (a,za,...,x) € A}; Ay
este o multime nevida si marginita superior de :v1 in R. Rezulta ca exista r; =
sup A; € R. Rationam similar pentru celelalte coordonate si gasim 7, ..., Ty
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margini superioare pentru A,, ..., Ay, respectiv. Fie T = (Zy,...,Tx) € R*.
Rezulta imediat ca T este marginea superioara a multimii A. Similar se

arata ca daca A este marginita inferior 9 y = inf A. .

1.2.5 Observatie. Trebuie remarcat ci, spre deosebire de R, in R k > 2,
nu ne putem apropia oricit de marginea superi-
oara a unei multimi cu puncte din multime.

In figura aldturatd ilustrim o astfel de situatie.

T=supAinsa, Ve Adzz) =|x—z|>r

1.2.6 Definitie. Fie z° € R* sir € R,r > 0; multimea
S°r) = {z e R* : d(x,2°) = ||z — 2°|| < r}

se numeste sferd deschisa cu centrul in 2° si de razd v iar multimea
T(z%r) = {z € R¥ : d(z,2°) = ||o — 2°| < r}

se numeste sferad inchisa cu centrul in 2° si de razd r.

1.2.7 Observatie. In cazul particular £ = 3 sferele deschise sint exact
sferele geometrice pline fara “coaja”, iar sferele inchise sint sferele pline din
spatiu.

Pentru k = 2, sferele deschise (inchise) sint discurile geometrice deschise
(inchise); in cazul k = 1 sferele deschise sint intervale deschise iar sferele
inchise sint intervale inchise (centrul este in mijlocul intervalului iar raza
este egala cu jumatate din lungimea acestuia).

1.2.8 Propozitie. O multime A C R* este mdrginitd dacd si numai dacd
exista un numar r > 0 a.i. A CT(0,r) (sau ||z|| <,V z € A).
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Demonstratie. (=): Presupunem ci A este marginita; fie y° = (12, ..., y2)
un minorant si 2 = (29, ..., 2{) un majorant pentru A.
Rezulta ca, V = = (z1,...,x) € A,

W<y, <aV\Vi=1,..,k
si deci ca
25| < max{|a7], [y} < max{|a}], [y}, i = 1,....k}.
Atunci Y8 2?2 < k-max{(29)%, (49)% : i =1,..., k}, de unde
||| < VE - max{|a?], |y?| i = 1, ..., k}.

Putem deci alege 7 = vk - max{|2?|, [¢°| : i = 1, ..., k}.

(«<=): Presupunem ca existd un numar r > 0 ai. A C T'(0,7) si notam
2= (r,...,r),y" = (—r,...,—r). Este evident ci y° este un minorant iar x°
este un majorant pentru multimea A. .
1.2.9 Observatie. Fie z,y € R* 2 < y; atunci [z,y] € {z: 2 < 2z < y}.
[ustram ac?st fapt in R?:

y
— [z,y] = {z € R? : d(z, 2) + d(z,y) = d(z,y)}

ar P
’’’’’

.
P
27 .
P

,,,,,

7.
,,,,,

{zeR*:2 <2<y}

1.3 Structura topologica uzuala pe R*

1.3.1 Definitie. Fie 2° € R*; o0 multime V C R¥ se numeste vecinitate
a punctului 2° dacd existd un numarr > 0 a.i. S(z° r) C V.

Vom nota cu V(z°) multimea tuturor vecindtatilor lui 2°; V(2°) este o
submultime a multimiz P(]Rk) a tuturor partilor lui R*. Evident cd ¥ = €
R* Y r > 0,S(z,r) € V(z).
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In figura de mai jos V C R? este un con plin cu virful in 3° iar z° este
un punct in interiorul lui V'; dupa cum se poate constata din figura, V este

vecinatate pentru z¥ dar nu este vecinatate pentru y°.

xs3
\%

T

Teorema urmatoare pune in evidenta citeva proprietati importante ale
multimii vecinatatilor unui punct.

1.3.2 Teorema. Fie 2° € R¥;V z € R* fie V() multimea vecindtatilor lui
x. Atunci sint indeplinite urmatoarele proprietati:

(Vi) VeVEd),VCw—=— W eV,
(Vo) Vi, Vo eV(a®) = V1NV, € V(),
(V) 2% € V.YV € V()
(V) YV eV(E®),3wWeV(®) ai VeV(x),VzeWw,
(V5) V#2203V eV, 3w eV ai VW =0.
Demonstratie. Vom schita demonstratia doar pentru ultimele doua pro-
prietati.

(V4). Oricare ar i V' € V(2Y) existd r > 0 asa fel incit S(2°,r) C V;
atunci W = S(z%r) € V(2°) 51 V z € W,d(x,2°) = |z — 2% < r. Fie
ri=r—llz=a° > 0;Vy € S(z,m), d(y,2°) = [ly—2°|| < [ly—z[|+[lz—2°| <
ri + ||z — 2% = r deci y € S(2°,7). Rezultd ca S(x,7) C S(x°% r) CV ceea
ce antreneaza V € V(x).

(Vs). Fie y¥ # 2% atunci r = % d(2°,y") = % A|2® =% > 0. S(z% 1) €
V(x°), S(y°,r) € V(y°) si intersectia celor doud vecinatiti este vida.

Intr-adevir dacd ar exista un element comun z atunci 2 - r = d(2°,¢°) <
d(x°, z) + d(z,y°) <r+7 =27 ceea ce este absurd. .
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In practica este mai dificil de operat cu notiunea generala de vecinatate;
unele vecinatati, cum ar fi de exemplu sferele, ofera simplificari ale rationa-
mentelor.

1.3.3 Definitie. Fie 2° € R*; o familic de multimi V,(2°) € P(R¥) se
numeste sistem fundamental de vecinatati daca:

1). Vo(x) C V(2°);

2. YV eV, 3w e V) ai. WV,

1.3.4 Exemple. Urmatoarele familii de multimi ofera exemple de sisteme
fundamentale numarabile de vecinatati pentru un punct x = (xy, ..., xg) € R*:

o {s(n)iner),
b). {]f[ (xi— %x+%) :nEN*}.

Avind la dispozitie notiunea de vecinatate putem trece la studiul convergentei
sirurilor in R¥.

1.3.5 Definitie. O functie f : N — R* se numeste sir de vectori in

R*: wom nota, ¥V n € N, f(n) = 2" = (a7, ...,2}). Sirurile de numere
reale (X7 )neNs -y (T} )nen se vor numi sirurile de coordonate asociate girului
(xn)nEN'

Ca si in cazul real, vom folosi pentru sirul f notatia mai sugestiva f =
(™) nen sau pur si simplu (™). Pentru a indica multimea A C R* ca multime
de valori pentru girul f vom nota (abuziv!) (z™) C A.

Fie f : N — R* un gir; sirul g : N — R* se numeste subsir al sirului
f daca exista o functie strict crescatoare ¢ : N — N a.i. g = f ow. Daca
notim p(n) = l,,Yn € N atunci un subsir al sirului f este g = (z'),en unde
(In)nen este un gir strict crescator de numere naturale.

1.3.6 Lema. Pentru orice mulfime infinita de numere naturale N C N
exista o unica bijectie strict crescatoare p : N — N.

Demonstratie. Fie N C N o multime infinita de numere naturale; deoarece
N este nevida si relatia de ordine pe N este o relatie de buna ordonare, exista
un cel mai mic element /y al multimii N; multimea infinita N\ {l} este nevida
si deci are un prim element [y. Evident [y < [;. Continuam inductiv acest
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procedeu; presupunem ca am determinat elementele o < I} < Iy < ... <[, ale
multimii N, unde [, = min(N \ {lo, ..., l,_1}). Multimea N \ {lo, ...,1,,} este
nevida (este o multime infinita) si deci are un prim element /,,, 1; evident [,, <
lnt1. Am definit astfel multimea {ly, ..., l,,...} SN culy <l <..<l, <...
Prin inductjie se poate arata ca l,, > n,Vn € Ngideci, Vn € N,n € {ly, ..., 1}
ceea ce Inseamna ca N = {ly, ..., l,,...}. Astfel am introdus o functie strict
crescatoare si surjectiva ¢ : N — N p(n) = 1,,Vn € N. Daca ¢ : N - N
este o alta bijectie strict crescatoare, ¢1(0) va fi cel mai mic element al
multimii NV §i astfel va coincide cu ly. ¢1(1) este cel mai mic element al
multimii N \ {¢1(0)} = N\ {lo} i astfel coincide cu l; s.a.m.d. In general

demonstram ca ¢1(n) = 1,,Vn € N ceea ce arata ca ¢; = ¢. .

1.3.7 Observatie. Lema precedenta afirma de fapt ca orice submultime in-
finita a lui N dotata cu ordinea naturala este “asemenea’ multimii numerelor
naturale (are acelagi numar ordinal). Vom considera de acum fiecare multime
infinita de numere naturale ordonata strict crescator.

1.3.8 Propozitie. Orice subsir al sirului f este restrictia functiei f la o
submultime infinita N C N.

Demonstratie. Daca g este subsir al sirului f = (2")pen, 9 = [ © @,
unde ¢ : N — N este o functie strict crescitoare; atunci g = (z'),eny unde
l, = p(n),¥n € N. Sa observam ca multimea N = ¢(N) = {l,, : n € N} este
o multime infinitd de numere naturale si cad g = (" )nen = fl -

Invers, fie N C N a.l. este o multime infinita de numere naturale si fie
¢ : N — N unica bijectie strict crescatoare a carei existenta este asigurata
de lema de mai sus; daca g = f|,, atunci g = f o ¢ este un subsir al sirului

f‘ n

1.3.9 Observatie. In cele ce urmeazd vom folosi notiunea de subsir al unui

sir (2™)pen, dupa cum va fi mai convenabil, in una din cele doua acceptiuni:
1. (z'),en, unde (I,,) este un sir strict cresciator de numere naturale sau
2. (2")pen unde N este o submultime infinita de numere naturale.
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Elemente de topologie in R¥

1.3 Structura topologici uzuali pe R*

1.3.10 Definitie. Fie (z"), C R un sir de vectori si fie x € R*; vom spune
ca girul (x™),, converge la x daca oricare ar fi o vecinatate V- € V(x) exista
un rang ng € N asa fel incit oricare ar fi n > ng, ™ € V; vom nota aceasta
prin " — x sau, cind vrem sa marcam spaliul in care are loc convergenta,

" — 1.
Rk

Sirul (z") C RF este convergent dacd existi * € R* a.i. 2" — x;
vectorul x se va numi limita girului convergent (z™). Un sir care nu este
convergent se numeste divergent.

A stabili natura unui sir inseamnda a stabili daca el este convergent sau
daca este divergent.

1.3.11 Observatie. Formal, definitia coincide cu aceea de la giruri de nu-
mere reale. De altfel, In orice spatiu abstract in care, printr-un procedeu
oarecare, am definit notiunea de vecinatate putem defini similar notiunea de
sir convergent.

1.3.12 Propozitie. Un sir (z™) C R* este convergent la = dacd si numai
daca girul de numere reale (|| — x||)nen este convergent la zero.

Demonstratie. (=) Presupunem ca 2™ — x i fie € > 0 arbitrar; atunci
sfera S(z,e) € V(z) si deci exista ng € N al. V n > ng,a" € S(z,¢) ceea ce
este echivalent cu ||2" — z|| < e. Deci [|2" — z| — 0.

18
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(«<=) Presupunem ca ||z" — z|| — 0 si fie V o vecinatate arbitrara a lui
x. Din definitia vecinatatilor, exista » > 0 a.i. S(x,r) C V si astfel exista
no € Nali |a" —z| <rV n >mng De aici rezulta ca pentru orice n > ng,
z" e S(x,r) CV. -

Convergenta unui sir de vectori din R” se reduce la convergenta sirurilor
de coordonate asociate lui.

1.3.13 Teoremi. Fie sirul (z"),eny € R¥ 2" = (27, ...,27),V n € N i fie
z = (z1,...,x3) € R¥;

" P xy = x;,Vie{l, ..k}

Demonstratie. Demonstratia teoremei rezulta din inegalitatile:
(%) 27 — ;| < ||l2" — || < VE-max{|z? — ;| :i =1, .., k}.

Intr-adevar, daca presupunem ca 2" — z atunci ||z" — z|| — 0 si, din prima
RFE

inegalitate a relatiei (%), ! — x;,Vi=1,..., k.
Reciproc, daca Vi € {1, ..., k}, x = Tis atunci Ve > 0,3 n; € N a.l.

€
1 xrp — x| < —=,Yn > n,.
() ol — i <
Fie ng =max{n; :i=1,..,k}; Vn>ngsiVi=1,...,k,n > n; si atunci, din
relatia (i),
€
T — ] < —
| | vk
de unde
VE-max{|z? — x| ci=1,.. k} <e.

Utilizind inegalitatea din dreapta relatiei (x) rezulta ca ||z — z|| — 0 si deci
n
" — . .
Propozitia urmatoare pune in evidenta citeva proprietati generale ale
sirurilor convergente; vom face observatia ca acestea sint asemanatoare pro-
prietatilor generale ale convergentei sirurilor de numere reale.

1.3.14 Propozitie.
1). Limita unui gir convergent este unicd.
2). Orice gir convergent este marginit.
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3). 2" —x = |z"]| — ||
RF R
4). Daca intr-un gir schimbam ordinea termenilor natura sa nu se schimba
war in cazul in care este convergent limita sa ramine aceeasi.
5). Daca unui gir 7 adaugam sau % suprimdam un numdar finit de termeni
natura sirului nu se schimba iar in caz de convergenta nici limita.
6). Orice subgir al unui sir convergent converge la aceeagi limitd.

Demonstratie. Deoarece convergenta sirurilor in R este echivalentd cu
convergenta girurilor de coordonate, demonstratia proprietatilor 1), 4), 5) si
6) se bazeaza pe proprietatile similare ale girurilor de numere reale.

2). Fie (") € R¥ convergent si fie z € R¥ limita sa; atunci ||2" — z| — 0.
Pentrue =1,3n; € Nad. [[2" —z| < 1,V n > n;. Notam cu

r = max{||z°[|, [«']l,.., =™ 7], ]| + 1}
atunci, V n € N, ||z"| < r. Intr-adevir, dacd n < ny, atunci este evident
inegalitatea iar daca n > ny, ||2"]| < ||z" — x| + ||z]| < 1+ ||z|| < r.
Rezulta ca {z" : n € N} C T(0,7) si deci (2") este un sir marginit

(multimea termenilor sai este o multime marginita).
3). Presupunem ca ™ — x; atunci, cum
RE

2™l = llzll] < fl=" = zf|, ¥ n e N,

rezulta ca [|z"| = || .

Operatii cu siruri convergente

1.3.15 Propozitie. Fie (z"),(y") C R*,z,y € R* (t,) C R sit € R;

atunci:
1)- " — }:>SC”+ n_ oy
Yy Y Y.
2). 2" >z N N
t, — 1t
K }:><w",y">e(x,y>.
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Demonstratie.
1). Deoarece 2" — z si y" — v, ||z" — x| — 0 si
este o consecinta a inegalitatii:

ly™ — y|| — 0; concluzia

1" +y") = (& + o)l < 2" ==l + [ly" = yll

2). tn-a"—t-z|| < tn-a"—tn2|[+[[tn-w—t-2|| = [tn]-[|2" —f|+[tn =[]
Deoarece (t,) este convergent la ¢ (deci este si marginit !) iar (z") este
convergent la z, din inegalitatea de mai sus rezulta ca t,, - 2" — t - x.

3). (@ y") = (z,y)| < [@" —z,y") [+ |(z, 9" — )| < ll2" — 2| - ly"[] +
llz|| - [[y™ — y||. Deoarece (x™) este convergent la x si (y") este convergent la

y (deci si marginit !), rezulta din relatia de mai sus ca (z",y") — (2,9). g

Teoreme fundamentale

Rezultatele urmatoare reprezinta instrumente fundamentale ale teoriei con-
vergentei in R¥: formal ele sint identice cu rezultatele similare de pe R.

1.3.16 Teorema. Orice gir monoton crescator si marginit converge la
marginea superioard a multimii termenilor sai.

Orice sir monoton descrescator si marginit converge la marginea infe-
rioarda a multimii termenilor sai.

Demonstratie. Fie (2") C R* un sir crescitor si marginit, unde V n €
N,2" = (af,...,2}). Tinind cont de definitia relatiei de ordine rezulta ca
VneNVie{l., k}a <ath In plus (™) fiind gi marginit, exista
r = (x1,...,x,) = sup{z” : n € N}. Asa cum a rezultat din demonstratia
teoremei 1.2.4, x; = sup{a] : n € N}, ..,z = sup{z} : n € N}. Rezulta
atunci din teorema de convergenta a sirurilor monotone de numere reale ca
x1 = lim, 27, ..., 2 = lim,, 2} si astfel, utilizind teorema 1.3.13, 2" — x.
Pentru siruri descrescatoare demonstratia este asemanatoare.

1.3.17 Corolar. Orice sir monoton si mdarginit in R¥ este convergent.

1.3.18 Teorems (lema lui Cesaro). Orice sir mdrginit in R* are subsiruri
convergente.

Demonstratie. Vom face demonstratia in cazul particular £ = 2. Fie

(z") un sir marginit din R? 2" = (27, 23), V n € N gi fie 2° = (29, 29) un



22 CAPITOLUL 1. ELEMENTE DE TOPOLOGIE iN RF

minorant iar 4° = (y?, »9) un majorant al mult{imii termenilor girului; atunci,
V neN, rezulta 2§ < zf < o si 2 < a2l <yl

Sirul (27),eny fiind marginit in R, varianta scalara a lemei lui Cesaro
ne asigura existenta unei multimi infinite Ny C N gi a unui punct x; €
R ai (2])nen, — 1. (29)nen, este subgir al girului (2}),en; fiind la
rindul sau marginit, exista o multime infinita Ny € Nj si un punct zo, € R
al. (x)nen, — xo. Sirul (2])nen, este subsir al girului (z7),en, s deci
(7 )nen, — 1. Rezulta atunci ca sirul (2"),en, este un subsir al girului
(" )nen convergent la x = (1, x9).

In cazul general demonstratia este similara.
Fie (") un sir marginit din R* 2" = (27,...,2}), V n € N si fie 20 =
(29, ...,2)) un minorant iar y° = (¢¢,...,y7) un majorant al mul{imii terme-
nilor girului; Vn € Nsi Vi € {1,...,k} rezulta 29 < z? <.

Sirul (27),eny fiind marginit in R, varianta scalara a lemei lui Cesaro
ne asigura existenta unei multimi infinite Ny C N si a unui punct x; € R
al  (2)nen, — x1. Subsirul (28)nen, al sirului (z5),ey fiind la rindul
sau marginit, exista o multime infinita Ny C N; si un punct x, € R a.i.
(5)nen, — 2. In acelagi mod obtinem multimile infinite No O N3 O

. 2 Ny si punctele z3, ...,z € R al. (25)nen; — T3, (T )nen, — Tk

Sirurile (z})nen, sint subsiruri ale sirurilor (z})nen;,V @ € {1,....k} si deci
(@M )nen, — x4,V i € {1,....k}. Rezultd atunci ca sirul (z"),en, este un
subsgir al girului (z"),en convergent la x = (1, ..., xy). .
Inainte de a enunta urmatoarea teorema vom defini notiunea de gir Cauchy.

1.3.19 Definitie. Un sir (2"),en € R* se numeste sir Cauchy sau sir
fundamental dacd Ve > 0,3ng € N a.7., Vn,m > ng, ||z" — 2™ < e.

Rezulta imediat ca un gir (z") este sir Cauchy dacda i numai dacda Ve >
0,3no € N a.i. Vn > ko,Vp € N, ||2"TP — 2"|| < e.

In teorema 1.3.13 am aratat ca un gir de vectori este convergent daca si
numai daca sint convergente toate sirurile sale de coordonate. O proprietate
similara are loc gi pentru sirurile Cauchy.

1.3.20 Propozitie. Fie (2"),eny € R 2" = (27, ..., 27),Vn € N; sirul
(z™) este sir Cauchy in R* dacd si numai dacd sirurile sale de coordonate
(XD )y oey () sint siruri Cauchy in R.

Demonstratie. Demonstratia este o consecinta imediata a inegalitatilor:

(%) |zP — 2| < ||lz" — 2™|| < VE-max{|z? — 2| :i=1,....k},Vn,m € N,
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Intr-adevir, daci (z™),, este sir Cauchy, atunci Ve > 0,3dny € N a.i,
Vn,m > ng, ||[z" — 2™|| < e. Din prima inegalitate din (x) rezulta ca, Vi =
Lok |z — 2| < [jla™ — 2™|| < e deci sirurile (z7'),, sint giruri Cauchy in
R, Vi=1,.., k.

Reciproc, daca presupunem ca, Vi = 1, ..., k, sirul (), este gir Cauchy

o . N € . .
in R, atunci Ve > 0,3n; € N ai. Vn,m > n;, |2l — 2| < N3 Fie atunci
ng = max{ni, ..., nx}; Vn,m > ng, Vk - max{|a? — a7 :i =1,...,k} < e si
utilizind inegalitatea a doua din (x) obtinem ||z™ — 2™|| < € ceea ce arata ca
sirul (2"), este sir Cauchy in R”. .
1.3.21 Teoremi (teorema lui Cauchy). Un sir (z") C R* este convergent
daca s1 numai daca este sir Cauchy.

Demonstratie. Teorema se poate demonstra ugor pe baza propozitiei
precedente si a variantei scalare a teoremei fundamentale a lui Cauchy. Astfel
un gir de vectori (2"),en din R* este convergent daci si numai dacg sirurile
sale de coordonate sint convergente (teorema 1.3.13); teorema lui Cauchy
pentru giruri de numere reale ne asigura atunci ca (z"),, converge daca i nu-
mai daca sirurile sale de coordonate sint giruri Cauchy si, conform propozitiei
precedente, aceasta are loc daca si numai daca (z"),en este sir Cauchy.

Putem sa prezentam si o varianta directa de demonstratie care urmeaza
aceeasi linie cu demonstratia teoremei lui Cauchy din R (sa se compare !).
Necesitatea. Presupunem ci sirul (z”) este sir convergent in R¥; atunci
existd un z unic in R* ai. " — z. Rezultd ci Ve > 0,3ny € N ai. Vn >
ng, |z" — x| < . Atunci Vn,m > no, ||lz" —2™|| < |l2" — ||+ |2™ — || < e.

Suficienta.

1. Fie (z") C RF un sir Cauchy; vom ariita intii ci (z") este marginit.
Intr-adevir, pentru ¢ = 1,3ny € N ai. Vo > ng, [|z" — 2| < 1. Rezultd
ca [|z"|| < [|a™ — 2" + ||la™|| < 1+ ||z™]||. Atunci, Vn € N, ||2"|| < M =
max{ |[2°[, ||, ..., [[&™ ||, 1 + ||z™]|} ceea ce aratd c& (z™) este marginit.

2. Deoarece (z") este marginit putem utiliza lema lui Cesaro pentru a
pune in evidentd un subsir (z'"),en convergent la un element z € R* (aici
(I)n este un gir strict crecscator de numere naturale).

Fie € > 0 arbitrar.

Deoarece (z") este gir Cauchy, exista n; € N a.l.

(1) |l — ™| < g,Vn,man.
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Deoarece (z),en converge la z, existd ny € N a.d.
; €
(2) |z —z|| < §,Vn > ny.

Fie ng = max{ny,na}; ¥n > ng rezulta [, > n > ny si n > ny si astfel din
(1) si (2) obtinem:

3 €
o — o < fla" = b + o — 2l < S+ 5 =,

ceea ce arata ca " — x. .

1.3.22 Teoremi (teorema lui Cantor). Fie (z") C R* i (1,) € (0, +00);
daca sint indeplinite conditiile:

1). T(xz™ ry) D T(z"™ rpy1),Vn € N,

2). lim, o1, =0,

atunci existd v € R* a.i.

(T (",r) = {z}.

Demonstratie. Vn,p € N, 2" € T'(2"*?,r,y,) C T(2",7,) de unde
(%) (B Iy

Cum 7, — 0, rezulta ca (z™) este sir Cauchy. Teorema lui Cauchy ne asigura
existenta unui element 2 € R* ai. 2" — z. Daca in relatia () trecem la
limita pentru p — oo obtinem, tinind cont de proprietatea de continuitate a
normei, ||z — z"|| < r,,¥n € N ceea ce arata ca x € T'(z",r,),¥n € N.

o0

Daca ﬂ T(z",r,) ar mai contine un element y, atunci ||" —y|| < r,,Vn € N;
n=0

rezulta ca 2" — y. Cum limita unui gir convergent este unica, x = y. .

1.3.23 Observatie. Vom prezenta o varianta a acestei teoreme in care
sferele inchise vor fi inlocuite cu multimi dintr-o clasa mai larga. Pentru
aceasta avem nevoie si introducem si alte elemente de topologie in R

Alte elemente de topologie pe R*

1.3.24 Definitie. Fie z € RF, A C R*; spunem ca:
1). x este punct aderent pentru multimea A daca VN A # O,VV € V(z);
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vom nota cu A multimea punctelor aderente ale multimii A si o vom numi
aderenta sau inchiderea multimii A.

2). x este punct de acumulare pentru multimea A daca V N A\ {z} #
0,VV € V(x); vom nota cu A" multimea punctelor de acumulare ale multimii
A si 0 vom numi multimea derivata a multimii A.

3). x este punct interior pentru multimea A daca A € V(x); mulfimea
punctelor interioare multimii A se numeste interiorul mulfimii A si se
noteazi cu A.

4). x este punct izolat al multimii A daca exista o vecindtate V € V(x) a.i.
VNA={z}

5). Multimea A este multime inchisa dacd A = A.

6). Multimea A este mulfime deschisa daca A = A.
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Elemente de topologie in R¥

1.3 Structura topologici uzuali pe R*

1.3.25 Observatie. Notiunile introduse in definitia precedenta cu ajutorul
vecinatatilor pot fi prezentate echivalent in limbajul unui sistem fundamental
de vecinatati; vom folosi multimea sferelor deschise drept astfel de sistem
fundamental de vecinatati pentru a obtine urmatoarele enunturi echivalente:
1). 1€ A<= Ve >0,S(x,e)NA#0.

2). v € A<= Ve >0,S(w,e)N A\ {z} # 0.

3). t€ A<= Je>0al S(zr,e) C A

4). x este punct izolat pentru A daca Je > 0 a.i. S(z,e) N A = {z}.

Tinind cont de faptul ci fiecare punct din R* admite un sistem fundamen-
tal de vecinatati numarabil, putem caracteriza principalele notiuni topologice
introduse prin definitia 1.3.23 cu ajutorul sirurilor.

1.3.26 Teoremi. Fie x € R*, A C R”; atunci:

1). x este punct aderent pentru A dacd $i numai daca exista un gir (z") C A
a.r. " — x.

2). x este punct de acumulare pentru A dacd i numai dacd exista un gir
(") C A\ {z} a.i. 2" — x.

3). A este multime inchisa daca $i numai daca oricare ar fi un gir convergent
(z") C A, lim, 2™ € A.

Demonstratie. 1). Fie z € 4A; Vn € N, S(z, 1) € V(z) si deci 2" €

26
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S(z, %)ﬂA. Atunci (™) este un sir de puncte din A g ||2" —z|| < %,Vn e N¥,
de unde 2" — z.

Reciproc, daca exista un sir (") C A convergent la z, atunci, VI €
V(z),3no € N al., Vn > ng,2" € V. In particular, 2™ € V N A de unde
VNA#0D. Rezulta ca z € A.

2). Caracterizarea este evidenta daca tinem cont de punctul 3). al
propozitiei 1.3.25.

3). Fie A o multime inchisa, deci A = A, si fie (#") C A un sir convergent
la z; din punctul 1). z € A = A. Reciproc, presupunem c& orice sir conver-
gent din A are limita in A. Stim c& A C A (vezi propozitia 1.3.26 punctul
1).); Vo € A, 3(2") C A ai. 2" — 2 (punctul 1).) si astfel 2 € A. Rezulta
ca A = A deci A este multime inchisa. .
1.3.27 Exemple.

1). Sferele inchise sint multimi inchise; sferele deschise sint multimi deschise.
intr—adevér, daca am presupune ca exista o sfera inchisa T'(x, r) care nu este
multime Inchisa ar rezulta ca 3y € T'(z,r)\T(z,r); atunci e = ||[x—y||—r > 0
si deci S(y,e)NT(x,r) # 0. Fie z un punct din intersectie; atunci ||z — y|| <
|z —z|| + ||z —yl| <r+e=|x—y| ceea ce este absurd.

Fie acum S(x,r) o sfera deschisa arbitrara din R*: s§ aritdm ci este vecini-
tate pentru orice punct al ei. Fie y € S(z,r)sie =r — ||z —y|| > 0. Vom
demonstra ca S(y,e) C S(x,r) de unde va rezulta ca S(x,r) este vecinatate
pentru y. Vz € S(y,e), ||z — || < |z —yl| + |ly — z]| < e+ ||z — y|| = ceea
ce arata ca z € S(x,r).

2). Fie A=A UA,U{(0,0)} € R®>unde A; = {(z,y) € R* : y > 1} iar
Ay = {(z,y) :€ R* : y < —2® — 1}. Imaginea multimii A este schitata in
imaginea de mai jos.
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Atunci A = A; U A, U{(0,0)} unde A; = {(x,y) EORQ cy > 1}
Ay=Ay={(z,y) eR*:y < —2?—1}, A/ = AjUAy, A= {(z,y) €ER*: y >
1, sau y < —z* — 1}; punctul (0,0) este singurul punct izolat al multimii A.
Multimea A; este multime deschisa iar multimea As este multime inchisa.
Multimea A nu este nici deschisa nici inchisa.

Remarcam aici ca daca o multime nu este deschisa nu rezulta ca ar fi
inchisa !!

3). Dreapta ce trece prin punctele z si y din R,

(x,y) ={z+t-(y—2z):teR}

este o multime inchisd in R* care nu are puncte interioare. Pentru a demon-
stra ca (x,y) este multime inchisa este suficient sa aratam ca orice punct care
nu apartine dreptei nu este punct aderent pentru aceasta.

Fie z & (z,y);Vt e R, fleu=a+t-(y — ) € (z,y). Atunci

(%) llz=ul* = (z—u, 2—u) = (2=, 2—2) =2t (2=, y—2)+t*-(y—2,y—) =
=z =yl =2t (z 2,y —2) + ||z — 2|*.

Trinomul de gradul doi in ¢ de mai sus are discriminantul
A=4l(z-zy—a) —|lz =z o —yll] <0

(inegalitatea lui Cauchy |(z—x,y—2z)| < ||z—z||-||y—z|| din propozitia 1.1.18).
Mai mult, discriminantul A < 0 deoarece (z — z,y — z) = ||z — z|| - ||y — ||
are loc daca si numai daca exista t € R a.i. z —x = t(y — x) ceea ce este
imposibil (z ¢ (x,y)). Atunci din (x)

A=z llr—ylP-(c—zy—a)* _ ,

Iz = ul* > - = =12 > 0.
4z -yl [l =yl

Din cele de mai sus rezulta ca sfera deschisa S(z, ) nu intilneste (z,y) si deci

2 ¢ (z,y).

Segmentul inchis [2°,y°] = {2°+1¢- (y° —2°) : t € [0, 1]} este de asemenea
multime inchisd. Trebuie s& mentionim aici ca segmentul deschis |z, y°[=
{2+t - (y° — 2°) : t €]0,1[} nu este insd multime deschisa in cazul k > 2.
Daca 2° < 3°, multimea {z € R* : 2° < 2 < ¢°} (paralelipipedul deschis)
este multime deschisa.
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4). Multimea A = {tz + sy + (1 —t — s)z : t,s € R} din R® (graficul unui
plan care trece prin punctele z,v, 2) este o multime inchisa in R? fira puncte
interioare.

Prezentam mai jos citeva relatii imediate intre notiunile introduse:

1.3.28 Propozitie.

1) ACACAANCAA=AUA.

2). Multimea punctelor izolate ale multimii A este egald cu A\ A’ si deci cu
AN\ A (un punct aderent pentru A este sau punct de acumulare sau punct
izolat al multimii A).

3). e A<= xeA\{z}

4). O multime A este inchisa daca si numai daca A" C A.

5). O mulfime A este deschisa dacd si numai daca A este vecinatate pentru
orice punct al ei.

Demonstratie. 1). Vo € A, A € V(z)sideciz € A; Vo € A,VV € V(z),z €
ANV, deci VN A#D ceea ce spune ca x € A.

Am aritat deci ca: A C ACA.

A’ C A rezulta imediat din definitia punctelor de acumulare.

Din cele demonstrate pini acum rezulta ca AUA’ C A. Fie acum un element
arbitrar x € A; dacd z € A atunci z € AU A". Dacd z ¢ A,VV € V(x),
VNA\{z} = VNA#D (x este punct aderent pentru A). Rezulta ca z € A'.
Aceasta demonstreaza incluziunea inversa A C AU A'.

2). Fie x un punct izolat al multimii A gi fie V' o vecinatate a sa a.l.
VNA={z}; atunciz € A C Asievident ca z ¢ A’. Invers, daca z € A\ A’
atuncidin 1) x € A; cum z ¢ A’ existd o vecinatate asa V a.i. VNA\{z} = 0;
atunci VN A = {x} si deci z este punct izolat al multimii A.

3). Este evidenta.

4). Din 1). A= AUA’; A este inchisd daca i numai daci A = A = AUA’
ceea ce este echivalent cu A” C A.

5). Este o consecinta imediata a definitiilor multimilor deschise i a
punctelor interioare. .

Propozitia urmatoare prezinta citeva proprietati ale multimilor inchise si
ale celor deschise.

1.3.29 Propozitie. Fie A C R*; atunci:
1). A este multime inchisa daca si numai dacd R*\ A este multime deschisd.
2). A este multime inchisa (cea mai mica multime inchisd care contine
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multimea A).
3). A este mulfime deschisa (cea mai mare multime deschisda confinutd in
multimea A).

Demonstratie. 1). Presupunem ca A este multime inchisa (A =
A); pentru a demonstra ci R* \ A este deschisa trebuie sa aratim ca RF \

o — —

A = R"\ A. Incluziunea R*\ A C R¥ \ A este asigurata de punctul 1). al
propozitiei 1.3.26. Fie acum z € R¥ \ A; rezultd cd ¢ A = A. Exista
deci o veciniitate V a lui = a.i. VN A = 0 sau, echivalent, V C RF \ A.
Ultima incoluziune ne asigura ci R \ A este vecinatate a punctului = si deci

ciz € RF\ A .
Reciproc, fie R¥\ A multime deschisd si # € A; daca presupunem ci x ¢ A

atunci x € R"\ A = R*\ A gi deci R*\ A € V(z). Cum x € A ar trebui ca
(RF\ A)N A # () ceea ce este absurd. Deci ipoteza x ¢ A este falsa, de unde
rezulta ci A = A si deci A este multime inchisa. ~

2). A arita cid A este inchisd revine la a demonstra cd A = A; din
propozitia 1.3.26 punctul 1). stim ¢d A C A. Presupunem c& incluziunea
inversa nu are loc si fie atunci # € A\ A. Deoarece x nu este punct aderent
pentru A, existd o vecinatate V a sa ai. VN A = (). Din proprietatea
(V1) a teoremei 1.3.2 exista o vecinatate W € V(z) ai. V € V(y),Vy € W.
Deoarece v € A, W N A # (). Fie atunci y € W N A. Rezulta ca V € V(y) si,
cum y € A, VN A # ) ceea ce reprezinta o contradictie.

Fie acum F' = F o altd mul{ime inchisa ce contine A; Vz € A, 3(a") C
A C F al. 2™ — z. Caracterizarea multimilor inchise data in teorema 1.3.28
punctul 3). ne permite sa afirmam ci r = limg 2™ € F. Deci A C F.

3). Demor})stra‘gia este asemanatoare celei de la punctul precedent; se
aratd cd A = A. -

Putem acum extinde teorema lui Cantor (teorema 1.3.22) de la clasa
sferelor inchise la aceea a multimilor inchise; sa definim intii diametrul unei
multimi marginite.

1.3.30 Definitie. Fie A C R* o multime mdrginitd; dupd propozitia 1.2.8
erista v > 0 a.i. A C T(0,7); atunci, Ve,y € A/d(z,y) = ||z —y| <
|zl + lyl| < 2-r. Deci multimea {d(z,y) = |z —y|| : x,y € A} este
marginita in R si deci exista

0(A) = supfllz —yl| : 7,y € A} € Ry
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Numarul §(A) se numeste diametrul mulfimii A.

1.3.31 Teorema (teorema lui Cantor). Fie (F,)uen un sir de multimi
inchise nevide din R*: dacd sint indeplinite conditiile:

1) Fn 2 Fn+1,Vn S N,

2). lim, o 0(F,) =0,

atunci existd © € R* a.i.

() Fn = {z}.

Demonstratie. Demonstratia este asemanatoare demonstratiei teore-
mei 1.3.22. Fie 2" € F,,Vn € N (F,, sint multimi nevide). Atunci, Vn,p €
N, 2" € F,,, C F, de unde ||z"*? —2™|| < §(F},,) — 0. Rezulta ca (z") este
sir Cauchy in R si deci converge la un z € R*. Dar, Vn € N, (2),n5n € F,
de unde rezulta ca = € F,,Vn € N. Deoarece §(F},,) — 0, intersectia acestor
multimi nu poate contine si alte puncte. .

Vom introduce acum o notiune topologica de mare importanta in intreaga
analiza matematica: notiunea de multime compacta.

1.3.32 Definitie. O multime A C R* se numeste multime compacti dacd
pentru orice gir de elemente din A se poate gasi un subsir convergent la un
punct din A.

Inainte de a da exemple de multimi compacte vom prezenta o caracterizare
importantd a acestor multimi in R

1.3.33 Teoremi. O submultime din RF este compactd dacd si numai dacd
este marginita si inchisa.

Demonstratie. Fie A C R* o multime compactd; si presupunem intii
ca A nu este marginita. Rezulta din propozitia 1.2.8 ca nu exista nici-o
sfera inchisa centrata in origine care sa contina multimea A. Deci Vn €
N*, 32" € A\T(0,n). Atunci sirul (z™) C A si, cum A este compacta, exista
(2'"),en un subsir al siu convergent la un punct din A. Pe de altd parte,
Vn € N*,||z!*|| > I,, > n ceea ce conduce la concluzia absurda ca acest subsir
este nemarginit. Deci ipoteza ca A este nemarginita este falsa.

Sa aratam ca A este Inchisa. Vom folosi punctul 3). al teoremei 1.3.28.
Fie deci (z") € A un sir convergent si fie z = lim, 2"; deoarece A este
compacti existd un subsir (z!7) al sirului (™) convergent la un punct y € A.
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Rezultd cd 2'» — x si, cum limita unui sir convergent este unicd, x = y. Deci
lim,, " € A ceea ce arata ca A este inchisa.

Reciproc, si presupunem ci A este o multime mérginita si inchisi din R”
si sa consideram un sir (z") C A. Rezulta ca (z™) este marginit si atunci,
din lema lui Cesaro (teorema 1.3.18), el are un subsir (z'») C A convergent.

Deoarece A este inchisa lim,, z'* € A. Deci A este compacta. .

1.3.34 Exemple. 1). Submultimile finite ale lui R¥ sint multimi compacte
(orice sir de elemente dintr-o astfel de multime contine un subsir constant).
2). Sferele inchise sint multimi compacte (sint multimi marginite si inchise -
vezi punctul 1) de la exemplul 1.3.27).

3). Segmentele inchise sint multimi compacte (vezi punctul 3) de la exemplul
1.3.27); semidreptele sau dreptele nu sint compacte.
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Functii de mai multe variabile

2.1 Definitii. Exemple.

2.1.1 Definitie. Fie ACR" si f: A —R';

o daca k =1=1, f este o functie reala de o variabila reala,

e daca k > 1 sil = 1, f este o functie reald sau scalara de mai multe
variabile,

o daca k=1 sil>1, f este o functie vectoriala de o variabila reald,

e in sfirsit in cazul k > 1,1 > 1, f este o functie vectoriala de mai multe
variabile reale.

Multimea Gy = {(z, f(x) : © € A} C RF x R = R*™ se numeste graficul
functier f.

2.1.2 Exemple.

1). Fie 2°,° € R*; functia f : R — RF f(t) = 2° + t(y° — 2°),Vt € R,
este o functie vectoriala de o variabila. Graficul lui f este dreapta care trece
prin punctele z° si %, f |[o,1] - restrictia acestei functii la intervalul inchis
[0,1] - are drept grafic segmentul de capete z° si y°.

2). Fie 2°,9°, 2° € R?; functia f: R* - R? f(t,s) =t -2 +s-y° + (1 —
t —s)-2° V(t,s) € R? are drept grafic planul care trece prin 2°, y° si 2°.

3). Aplicatia f : [0, +00) x [0, 27) — R? definita prin f(r,u) = (x,y) unde

T = TrCcosu,

Yy =rsinu
carteziene in plan la cele polare. Restrictia ei la (0,400) x [0,27) este o
bijectie pe R*\ {(0,0)}.

este o surjectie; ea reprezinta trecerea de la coordonatele

33
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4). Aplicatia f : [0, +00)x [0, 2m)x [~ %, +2] — R® definitd prin f(r, u, v)

T =T COSUCOSV,

(x,y,z) unde ¢ y =rsinucosv este o surjectie; ea reprezinta trecerea de
Z =rsinv

la coordonatele carteziene la coordonatele polare in spatiu. Semnificatia vari-

abilelor r, u si v este redata in schita de mai jos.
z

(z,y,2)

(0,0,0) \” i

>
T h (l’, Y, 0)
Restrictia acestei aplicatii la (0, +00) x [0,27) x (=7, +7) este o bijectie
pe R*\ {(0,0,2) : z € R}
5). Norma || - || pe R* este o aplicatie scalard de mai n variabile reale.

Produsul scalar (-,-) pe R* este o aplicatie scalarg de 2 - k variabile.

2.1.3 Definitie. Fie f : A C R*¥ - R, Va € A, f(z) € R deci f(z) =
(fi(x), ..., fm(x)) unde fi,...,fm : A — R sint functii scalare. Functiile
fi, -, fm se numesc functiile de coordonate ale lui f. Daca ey, ..., €,
este baza canonicd in R' (e; = (0,...,0,1,0,...,0), unde cifra 1 este plasatd
pe locul i) atunci, Vo € R* Vi € {1,...,m}, fi(x) = (f(z),e) sau, scris
functional, f; = (f,e;).

Vom mai scrie f = (f1,..., fm) pentru a nota ca fi, ..., fm sint functiile
scalare de coordonate ale functiei f.

Operatii cu functii

Fie f,g : A C R* — R' si t € R; definim atunci functiile suma, produs cu
scalari gi produs scalar in felul urmator:

o f+g: A=RL(f+9)(2) = f(2) + g(x), Vo € A;

ot-f: AR (t-f)(x)=t- f(zx),Vz € A

° (f,9): A—=R,(f,9)(x) = (f(z),9(x)),Vr € A.

Primele doua sint functii vectoriale iar ultima este functie scalara.
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Daci f : A CR¥ - R f = (f1,....,fm) iar g : B C R' — RP,g =
(91,-..,gp) si daca este indeplinita conditia de compunere f(A) C B atunci
putem defini functia compusa:
egof:A—-RP (gof)(x)=yg(f(x)),Yx € A. Functia g o f se reprezinta
prin functiile sale de coordonate prin:

go f = (g1<f17 ) fm)a "'7.gp(f17 ) fm)) :

2.2 Limite de functii

In cele ce urmeaza vom defini notiunea de limita a unei functii de mai multe
variabile intr-un punct de acumulare a multimii de definitie.

2.2.1 Definitie. Fie f : A CRF - R sia € A (a punct de acumulare
pentru A); spunem cd elementul L € R’ este limita functiei f in punctul a
daca pentru orice sir () C A\ {a}, 2™ —a, f(z™) — L.

R R

Vom nota aceasta situatie cu lim,_., f(z) = L.
Vom spune ca o functie f are limita intr-un punct de acumulare a € A’
dacd evistd L € R a.i. lim, ., f(2) = L.

2.2.2 Observatie. Ca si in cazul functiilor de o variabila reala apare
restrictia 2" # a,Vk € N; aceasta precautie se datoreaza urmatoarei situatii:
este posibil sa avem a € A gi lim, ., f(z) # f(a). Daca nu am folosi restrictia
mentionata, printre sirurile (") C A cu 2™ — a ar putea figura si sirul con-
stant 2" = a,Vk € N iar pentru acest sir f(z") — f(a) !

Ca si in cazul convergentei sirurilor, existenta limitei unei functii vectoriale
se reduce la existenta limitelor functiilor sale scalare de coordonate.

2.2.3 Teoremi. Fie f = (fi,...fm) : ACRY - R aec A si L =
(Ly, ..., L) € R'; functia vectoriald f are limita L in a dacd si numai dacd,
Vi e {1,...,m}, functia scalara f; are limita L; in a.

Demonstratia este o consecinta imediata a definitiei si a teoremei 1.3.13.
2.2.4 Propozitie. Fie f: (a1, a2) X (b1, 62) — R, a € (a1, 2),b € (b1, o).
Presupunem ca sint indeplinite conditiile:

1) Elhnl(ac,y)a((z,b) .f(x> y) = l;
2). ¥V € (ar, a2), Ilimy ., f(2,y) = g(v),

3) vy < (61752)7 Elhmxﬂa f(x7y) = h<y)
Atunci 3lim, ., g(z) =1 g0 Flim,_, h(y) = L.
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Demonstratie. Intr-adevir, conditiile 2). si 3). definesc functiile scalare
g: (o, a9) = Rsgih:(6,0) — R

Din 1)., Ve > 0,36 > 0 al. V(z,y) € (Oél,ag) X (61, 02) \ {(a,b)} cu
lv —al < dsily—>b <0 rezulta |f(z,y) — | < 5; alegem 0 destul de mic
pentru ca (a — d,a+ d) C (g, a0) 51 (b— 39,04 6) C (B, Ba).

Fie z € (a—6,a+0)\ {a} arbitrar, dar momentan fixat; deoarece g(x)
lim, ., f(z,y), 30, > 0al Yy € (b—0,,b+0,) cuy #z, |f(z,y)—g(x)| <
evident putem alege 9, < 9.

Fieuny € (b—6,,b+0,) C(b—9,b+9)cuy#x;cumz € (a—d,a+0)
st (z,y) # (a,b),|f(z,y) =1 < 5. Atunci |g(z) =] < [g(z) = fz,y)] +
|f(z,y) =l <5+5=c¢

Rezulta ca exista lim,_, g(x) = [. Similar se arata ca lim,_, h(y) = 1. 4

I

N ™M

Tr—a y—)

2.2.5 Definitie. Limitele lim g(x) = lim [hm f(z, y)} i lim,_, h(y) =

lim,_ [lim f(z, y)] se numesc limite iterate ale functiei f in punctul (a,b).

2.2.6 Observatie. Daca limitele iterate ale unei functii intr-un punct de
acumulare a multimii sale de definitie exista si nu sint egale, functia nu poate
avea limita in acel punct. Este insa posibil ca limitele iterate sa existe, sa fie
egale, si totusi functia sa nu aiba limita. Sa se studieze 1n acest sens exemplul
urmator.

Fie f : R? — R definit prin

Ty
f(xuy):{ 22 + y? , (2, y) #(0,0),
0 ><x7y):(0,0)

Sa se arate ca hn% {hm f(z, y)} =0= 1111(1) [hm f(z, y)} dar functia nu are
— Yy— y—

limita in (0, 0).
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2.2 Limite de functii

Urmatoarul rezultat este o caracterizare de tip e —0 pentru limita unei functii.

2.2.7 Teoremi. Fie f : ACRY - R, ae A" si L € R";
lim, ., f(x) = L daca si numai dacd

(e—=¢6) Ve>0,30 >0 a.i Yee A\ {a},|x—a| <6, |f(x)— L| <e.

Demonstratie. (=): Presupunem ca lim,_, f(z) = L i totusi conditia
(¢ —9) nu are loc; atunci exista ¢ > 0 ad. Vk € N*, 32" € A\ {a} cu
|z" —al| < £ si || f(z™) = L|| > €. Rezultd c& (2™) C A\ {a}, 2" — asi totusi
f(z™) 4 L ceea ce contrazice ipoteza.

(<=): Presupunem ca este indeplinita conditia (¢ — 0) si fie (") C
A\ {a},2" — a; Ve > 0 fie § > 0 numarul a carui existenta este asigurata
de conditia (¢ — 0). Deoarece 2" — a, kg € N a.i. Vk > ko, [|2" — a|| < 6.
Rezulta atunci ca || f(z™) — L|| < e ceea ce arata ca f(z") — L. .

2.2.8 Observatie. Teorema precedenta poate fi reformulata astfel:
lim,_, f(z) = L <= pentru orice sferd S(L,s) C R existd o sfera S(a,d) C
R* asa fel incit, oricare ar fi x € AN S(a,d) \ {a}, f(x) € S(L,¢).

Putem formula o conditie echivalenta in limbajul vecinatatilor.

2.2.9 Propozitie. lim, ., f(x) = L <= VYV € V(L),3U € V(a) a.i. Yz €
ANU\A{a}, f(z) e V.

37
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Putem acum prezenta o conditie de existenta a limitei unei functii intr-un
punct de acumulare a multimii sale de definitie.

2.2.10 Teorem3 (teorema lui Cauchy). O functie f : A C R¥ — R' admite
limita intr-un punct de acumulare a € A" daca si numai daca

()

Ve > 0,30 > 0,Va,y € A\ {a}, |z —al| <4, |ly —all <6,[[f(z) = fy)] <e.

Demonstratie. Necesitatea. Presupunem ca functia f are limita in a; deci
exista L € R" ai. lim,_, f(z) = L. Utilizind conditia (¢ — 6) din teorema
2.1.7, Ve > 0,36 > 0 ai, Vo,y € A\ {a},[lz —all <6 |ly—all <6 =
1f(z) = LIl < 5,1/ (y) — LIl < 5 de unde |[f(z) = f(y)ll <e.

Suficienta.

a). Presupunem conditia (C) indeplinita si fie (z") € A\ {a},2" — q;
atunci Jky € N al. Vk,l > ko, ||2" —al| < §,|2' —a| < 6. Rezulta ca
| f(2™) — f(2")|| < e. Atunci (f(z™)) este un sir Cauchy in spatiul R’ si deci
este convergent (teorema 1.3.20).

b). Fie acum doua siruri (z"), (y") C A\ {a} convergente la a; construim
atunci girul (2") € A\ {a} punind 2% = 2" §i 2?**! = ¢y Vk € N. Sirul
(") este convergent la a si atunci, procedind in acelasi fel ca in a)., (f(z"))
este convergent in R'. Atunci existd un element L € R' ai. f(2") — L si
fy") — L.

Deci pentru orice gir din (z") C A\ {a} convergent la a sirul (f(z"))

converge la acelagi element L € R"; atunci lim,_., f(z) = L. .

Operatii cu functii cu limita

Demonstratia propozitiei urmatoare se bazeaza pe definitia limitei unei functii
intr-un punct de acumulare si pe operatiile corespunzatoare cu limite de
siruri.

2.2.11 Propozitie. Fie f,g: ACR" - R' sia € A a.i. Ilim,_, f(z) €
R' si Ilim, ., g(z) € R'; atunci:
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). im0 (f(2) + g(x)) = lim, o f(2) + lim, ., g(x)
2). T q(t- f()) = LT, o f(2),

3). lim (f(2),g(x)) = (lim f(x), lim g() ) .

1), 1 | = fltim, ., f(2)].

| m,_.
f(A) C R* si lim, ., f(z) #0,

5). 1 ( ! ) !
.o limg ., = .
f(z) lim, ., f(z)
2.2.12 Propozitie. Fie f: ACR" - R.ac A, g: BCR - RP.be B

g1 f(A) € B
Daca exista lim,_., f(x) = b, exista lim, ., g(y) = 1 si f(x) # b,Va €
A\ {a} atunci exista lim,_,(go f)(z) =L

Demonstratie. Fie (z*) € A\ {a},2* — a; deoarece f(A) C B, sirul
k

") = (f(=")) € B. Cumf()%bWEA\{a}y #bVk € N. In
sfirgit din lim, ., f(z) = b rezultd ca y* — b. Dar lim,_; g(y) = l si deci
(go f)(x*) = g(y*) — 1. Rezultd atunci c& existd lim, _.,(go f)(x) = .

Semnul unei functii cu limita

2.2.13 Propozitie. Fie f: ACR" - Rgia € A'; dacd existd lim,_, f(z) =
L # 0 atunci 30 > 0 a.7. Yz € S(a,6) N A\ {a}, f(z)- L >0 (functia f are
acelagi semn cu limita sa L pe o vecinatate a punctului a).

L]

Demonstratie. Deoarece L # 0, e = — > 0; utilizind conditia (¢ — §) din
teorema 2.2.4, 30 > 0 ail Vo € A\ {a} cu ||z —al <, |f(z) — L] < e.
Rezulta deci ca Vo € S(a,0) N A\ {a},

IZ]

L—E<f(x)<L+ 5

2

L L .
Daca L > 0 rezulta ca f(z) > 5 > 0 iar daca L < 0, f(z) < 3 < 0. In

ambele cazuri f(z) are acelagi semn cu L si deci f(x)- L > 0. .

2.3 Functii continue

2.3.1 Definitie. Fie f: A CR*¥ = R si a € A; spunem cd functia f este
continua in a daca ¥(2") C A, 2" — a = f(z") — f(a).
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Functia f este continua pe multimea A daca este continud in toate
punctele multimii A.

Daca | nu este continua intr-un punct b € A spunem ca f este discon-
tinua in b.

Exemplu. Fie functia f : R* — R definiti prin

o) =4 T @) #00),

0 ,(z,y) = (0,0).

Y(a,b) € R*\ {(0,0)}, V(2" ") — (a,b), f(z",y") — f(a,b). Astfel f este
continua in (a, b).

Daca (a,b) = (0,0) si consideram un sir (z") C R\ {0},2" — 0 si un
t € R atunci sirul (2", t-2") C R*\{(0,0)} converge la (0,0) iar f(z", t-2") =
1—t?
1+2
in (0,0).

Remarcam din definitie ca problema continuitatii se pune in toate punctele
multimii de definitie a unei functii: si in punctele de acumulare si in cele
izolate; in propozitia urmatoare stabilim legatura intre existenta limitei si
continuitatea unei functii intr-un punct.

Rezulta ca limita lui (f (2", y™)) depinde de ¢ si deci f este discontinua

2.3.2 Propozitie. Fie f : ACRF - R si fie a € A;

1). Daca a este punct izolat pentru A atunci f este continud in a (fara
nici-o alta conditie).

2). Daca a € AN A" atunci conditia necesara si suficientd ca f sa fie
continud in a este ca sa existe lim,_, f(x) = f(a).

Demonstratie. 1). Daca a este punct izolat al multimii A atunci exista
o vecinatate V € V(a) ai. VN A = {a}. Atunci, V(z2") C A cu 2" — a,
dng € N al. Vn > ng, 2" = a. Rezulta ca sirul (f(z"™)) este constant (cu
exceptia unui numar finit de termeni) si deci converge la constanta f(a).

2). Fie acum a € AN A’. Presupunem intii ca f este continua in a si ca
(™) € A\ {a},z" — a; din definitia continuitatii, f(z™) — f(a). Rezulta ca
exista lim, ., f(z) = f(a).

Sa presupunem acum ca exista lim,_., f(x) = f(a). Daca (z") C A este
un gir arbitrar cu 2™ — a atunci putem avea urmatoarele trei situatii:

a). Sirul (z™) are toti termenii (cu exceptia eventuala a unui numar finit
dintre ei) diferiti de a; din definitia limitei rezulta atunci ca f(z™) — f(a).
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b). Sirul (z") are toti termenii (cu exceptia eventuala a unui numar finit
dintre ei) egali cu a; atunci sirul (f(z™)) este un sir constant si deci converge
la valoarea constantei f(a).

¢). Sirul (z") are o infinitate de termeni egali cu a si o infinitate de
termeni diferiti de a; fie N,M C N, N UM = N doua multimi infinite a.i.
" # a,Vn € N i 2" = a,Yn € M. Atunci (2"),en € A\ {a} este un
subsir al girului (2"),en i deci este convergent la a; cum lim,_., f(z) = f(a),
(f(2™))nen — fla). Sirul (x™),en este constant si deci si (f(2"))nensr este
constant egal cu f(a) si astfel converge la f(a). Rezulta ca (f(z"))nen are
doua subsiruri convergente la aceeasi limita f(a), subsiruri ce epuizeaza sirul;
atunci (£(a))er — f(a).

In toate cele trei situatii posibile f(z") — f(a) si astfel f este continua
in a. .

Propozitia urmatoare reduce studiul continuitatii unei functii vectoriale
la studiul continuitatii functiilor scalare de coordonate.

2.3.3 Propozitie. Fie f = (f1,...f)) : ACR" = R' sia € A; f este
continud in a dacd i numai daca, Vi € {1,...,1l}, f; este continud in a.

Demonstratie. Demonstratia este o consecinta a definitiei continuitatii si
a caracterizarii convergentei girurilor data in teorema 1.3.13.

Teorema urmatoare da caracterizari pentru continuitate asemanatoare
celor date pentru limita unei functii in teorema 2.2.4 i in propozitia 2.2.6.

2.3.4 Teoremi. Fie f: A CRF — R si a € A; wrmdtoarele afirmatii sint
echivalente:
1). f este continud in a;
2). Ye > 0,30 >0 a.i. Vo € A cu ||x —al| <9, f(x) — fla)| < e
@©3). WV € V(f(a)),3U € V(a) a.i. Vo € ANU, f(z) € V.

Demonstratie. (1).<= 2).): Daca a € AN A’ afirmatia este o consecinta a
punctului 2) din propozitia 2.3.2 i a teoremei 2.2.4 in care se da caracteri-
zarea (¢ — §) pentru limita unei functii intr-un punct de acumulare.

Daca a este punct izolat f este automat continua; in mod asemanator
conditia 2) este automat indeplinita deoarece exista o vecinatate si deci o sfera
S(a,d) al. S(a,6)NA = {a} si pentru orice x € S(a,d0)NA, | f(x)— f(a)| =
[f(a) = fa)]| =0 <& Ve > 0.

Conditia 2). poate fi reformulata astfel: VS(f(a),e),35(a,d) ad. Vo €
S(a,0)NA, f(z) € S(f(a),e).
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Tinind cont ca familia sferelor cu centrul intr-un punct formeaza un sistem
fundamental de vecinatati pentru acel punct, 3). este echivalent cu 2). .

Operatii cu functii continue
Urmatoarea propozitie este o consecinta a propozitiilor 2.2.11 si 2.3.2.

2.3.5 Propozitie. Fie f,g: ACR* - R' sia € A a.i. f sig sint continue
pe A; atunci:
1). f+g:A—R este continud pe A,
2). t-f:A—R este continud pe AVt € R,
3). (f,g9): A— R este continua pe A,
4). ||f]l : A — R este continua pe A.
Dacal=1, gi f(A) CR"

1
5). 7 : A — R este continua pe A.

Propozitia 2.2.12 are urmatoarea replica pentru continuitate:

2.3.6 Propozitie. Fie f: ACRF = Rl.ae A, g: BCR - R™ be B gi
f(A) € B.

Daca f este continua in a $i g este continua in b atunci go f este continua
in a.

Daca f este continua pe A si g este continud pe B atunci g o f este
continua pe A.

Demonstratia este o consecinta imediata a definitiei continuitatii.

In sfirgit, avem pentru continuitate un rezultat asemanator propozitiei
2.2.13 1n care se precizeaza semnul local al unei functii cu limita; demonstratia
utilizeaza propozitia 2.2.13 si din nou propozitia 2.3.2.

2.3.7 Propozitie. Fie f : ACR* - R, a € A a.i. f este continud in a;
daca f(a) # 0 atunci 36 > 0 a.i. Vo € S(a,0)NA, f(z)- f(a) > 0 (functia f
are acelagi semn cu f(a) pe o vecinatate a punctului a).

Proprietati ale functiilor continue pe multimi

In aceasta sectiune vom prezenta citeva rezultate deosebit de importante
privind comportarea functiilor continue pe diverse tipuri de multimi.
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2.3.8 Teoremi. Fie f : A C R¥ — R': dacd multimea A este compactd
in R¥ si functia f este continud pe A atunci multimea valorilor lui f, f(A),
este multime compactd in R.

Demonstratie. Pentru a demonstra ca multimea f(A) este compacta in
R’ trebuie si ardtam ca f(A) este mirginitd si inchisa (vezi teorema de
caracterizare 1.3.33).

Sa presupunem prin reducere la absurd ca f(A) nu este marginita; rezulta
ca putem alege, Yn € N, un element 2™ € A al. |f(z™)] > n. Sirul
(2™) C A admite un subsir (2'") convergent la un element z € A (A este
multime compacti). Deoarece f este continud pe A, f(z'") — f(a) si deci
girul (f!*) este marginit (propozitia 1.3.14). Aceasta intrd in contradictie cu
| f(2)]| > 1, > n,Vn € N. Deci ipoteza ci f(A) este nemarginita conduce
la o contradictie.

Sa aratam acum ca f(A) este multime inchisa. Vom utiliza pentru aceasta
caracterizarea multimilor inchise prezentata in teorema 1.3.28, punctul 3).
Fie deci (y") C f(A) un sir convergent la un element y € R; atunci exista
girul (z") C A al., Vn € N, y" = f(2™). Deoarece A este compacta girul
(™) admite un subsir (z'") convergent la un element x € A. Cum functia f
este continud in x, lim,, f(z'*) = f(x). Pe de alta parte, f(z') = y'» — .
Unicitatea limitei unui sir convergent ne conduce la concluzia y = f(z) €
f(A). Deci orice gir convergent din f(A) are limita in f(A) ceea ce inseamna
ca f(A) este multime inchisa.

f(A) fiind multime marginita si inchisa este multime compacta in R .

Un corolar al acestei teoreme utilizeaza faptul ca multimile compacte din
R admit un cel mai mic gi un cel mai mare element (isi ating marginile).

2.3.9 Corolar (teorema lui Weierstrass). Fie f : A C R¥ — R; dacd A
este compactd in R* gi [ este continud pe A atunci existd doud elemente
T tar € A i, f(z) < f(z) < flaa) Ve € A.

2.3.10 Observatie. In cazul [ > 1 concluzia teoremei lui Weierstrass nu
mai are loc; intr-adevar, agsa cum se poate usgor verifica, aplicatia iden-
tica f : R®> — R? f(z) = z,Vo € R? este continua peste tot. Sfera
inchisa 7°((0,0),1) € R* (discul inchis cu centrul in origine si de raza 1
din plan) este o multime compacta (marginita gi inchisad) dar multimea
f(T((0,0),1)) = 7((0,0),1) nu are un cel mai mic gi nici un cel mai mare
element (inf 7°((0,0),1) = (-1, —1) iar sup7°((0,0),1) = (1, 1)).
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Ca si functiile reale de o variabila reala, functiile vectoriale de mai multe
variabile continue pe multimi compacte sint continue uniform. Sa precizam
sensul acestei continuitati uniforme.

2.3.11 Definitie. Fie f : A C R* — R!: spunem cd functia f este uniform
continud pe A dacd, Ye > 0,35 > 0 a.i. Va,y € A cu ||z —y|| <6, rezulta ca

1f(x) = Fw)ll <e.

2.3.12 Observatie. Si observim ci daci o functie f : A C RF — R este
uniform continua pe A:

Ve >0,30. >0ail Ve e AVye Acu |z —y| <6, f(x) = fly)| <e=
Ve >0,Vz € A,30., >0al VyeAcu |z—yl <0, |f(x)—fy)] <e <=
Vo e A,Ve > 0,30, >0al VYye Acu|lz—vy| <4, |f(z)— fly)] <e<=

Vo € A, f este functie continua in z <
f este continua pe multimea A.

Aga cum se observa din cele de mai sus, alegerea lui ¢ este, in cazul
functiilor uniform continue, independenta de x € A i deci, pentru astfel de
functii, continuitatea in fiecare punct x se scrie in mod uniform (cu acelasi d
dependent doar de ¢); de aici i denumirea de uniforma continuitate.

Rezulta ca orice functie uniform continua pe o multime este continua
pe acea multime; reciproca acestei afirmatii nu este adevarata nici pentru
functiile reale de o variabila reala si cu atit mai mult ea nu va functiona
pentru functiile de mai multe variabile.

Un exemplu remarcabil de functii uniform continue il constituie functiile
lipschitziene.

2.3.13 Definitie. O functie f : A C R¥ — R! este functie lipschitziani
pe A (sau verifica condifia lui Lipschitz pe multimea A) dacd existd un

numar L > 0 (constanta lui Lipschitz) a.i. ||f(x)—f()|| < L-[lz—yl|,Vz,y €
A.

2.3.14 Propozitie. Orice lipschitziana pe o multime este uniform continuad
pe acea mulfime.

Demonstratie. Intr-adevir, fie f:ACRF — R o functie lipschitziand pe

A cu constanta Lipschitz L; atunci Ve > 0,30 = % > 0 al Vr,y € Acu
€

lz =yl <o, llf(2) = fWIl < Ll -yl < L- 7 =e .

In propozitia urmatoare dam o carcaterizare secventiala (cu ajutorul
sirurilor) a uniformei continuitati a unei aplicatii.
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2.3.15 Propozitie. O functie f : A C R* — R! este uniform continud pe A
daca gi numai daca oricare ar fi doua giruri (z™), (y") C A cu z™ —y"™ — Ogr,
f(z™) — f(y™) — Op: (primul O este elementul nul din R* iar al doilea 0
elementul nul din spatiul R! ).

Demonstratie. (=>): Presupunem ca f este uniform continua si fie doua
siruri (z"), (y") € A cu 2" — y" — Ogr; Ve > 0, din conditia de uniforma
continuitate, 3§ > 0 a.i. Va,y € A cu ||z —y|| < §,||f(z) — f(y)]| < e.
Deoarece " — y" — Oge, Ing € N al. Vn > ng,||lz" — y"|| < 0 si atunci
IIf(x™) — f(y™)]| < e,Vn > ng. Aceasta antreneaza f(z™) — f(y") — Op.

(«<=) Sa presupunem ca, desi conditia secventiala este indeplinita, f nu
este uniform continua. Atunci existd un numar g5 > 0 a.l., Vn € N* gi deci
pentru § = % exista 2", y" € A cu ||[z" —y"| < % si totusi || f(z™) — f(y™)]| >
0. Rezulta atunci ca 2™ —y™ — Oge si f(2™)— f(y™) -» O ceea ce contrazice
ipoteza facuta. .

Am observat ca orice functie uniform continua este continua; in situatia
in care multimea de definitie a functiei este compacta, are loc si reciproca
acestei conditii.

2.3.16 Teorema (teorema lui Cantor). Fie A C R* o multime compactd si
f:A— R o functie continud pe A; atunci f este uniform continud pe A.

Demonstratie. Sa presupunem prin reducere la absurd ca f este
continua pe multimea compacta A dar ca nu este uniform continua; uti-
lizind caracterizarea secventiala din propozitia precedenta, exista doua siruri
(™), (y") € A cua” —y"™ — Ops dar f(z") — f(y") - Op. Atunci Jeo > 0 si
exista o multime infinita N C N a.i. ||f(z™) — f(y™)| > €0,Vn € N.

Deoarece A este compacta, exista o multime infinita N; C N a.l. subsirul
(™) nen, sa fie convergent la un element x € A si exista o submultime infinita
Ny € Np ad. subsirul (y"),en, sd convearga la un element y € A; atunci
(™) nen, converge la = (este un subsir al girului (z™),en, )

Deoarece (2" — y")nen, — Ogr rezulta x = y. Functia f este continua pe
A §i deci este continua in x; cum (2")pen, — T 1 (Y )nen, — x, (f(2") —
F@")nen, — f(x)— f(z) = Og:. Dar aceasta vine in contradictie cu conditia
| f(x™) — f(y™)|| > €0, ¥n € No. Contradictia obtinuta arata ca ipoteza ca f

nu este uniform continua este falsa. .
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Functii de mai multe variabile

2.3 Functii continue

Proprietati ale functiilor continue pe multimi

O alta proprietate remarcabila a functiilor continue este aceea de a conserva
conexiunea. Vom introduce intii notiunea de multime conexa prin arce in

R”.

2.3.17 Definitie. Fie 2,y € R*; o functie ¢ : [a,b] — R, continud pe
segmentul [a,b] C R, cu proprietatea ca P(a) = x si P(b) = y se numeste
drum sau arc ce uneste v cuy. Multimea Gy = 1([a,b]) = {(t) €R" : t €
[a,b]} se numeste graficul arcului 1.

2.3.18 Observatie. In definitia unui drum, intervalul [a,b] C R poate fi
inlocuit cu oricare alt interval inchis. De exemplu, daci v : [a,b] — R” este
un drum ce uneste punctele z si y din R* si definim ¢ : [0,1] — [a, ] prin
e(t)=(1—t)-a+t-b,Vt €[0,1] atunci ¥ o p este de asemenea un drum ce
uneste x cu y si care are acelasi grafic (Gy = Gyoyp).

Mai exact, vom spune ci doud drumuri ¢ : [a,b] — R* si 6 : [c,d] — R*
sint echivalente daca exista o functie surjectiva si strict crescatoare ¢ :
[c,d] — la,b] ai. 6 = 1 o (sa observam ca o asemenea functie ¢ este o
bijectie continua gi cu inversa continua, deci este un homeomorfism). Este
clar ca daca 1 uneste punctul x cu y atunci 6 are aceeasi proprietate. Relatia
introdusa intre drumuri este o relatie de echivalenta (reflexiva, simetrica si
tranzitiva). O clasa de echivalenta in raport cu aceasta relatie se numeste

46
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curbi in R*. Astfel in definitia de mai sus se poate inlocui drumul ¢ cu
orice alt drum echivalent.

2.3.19 Exemple. 1). ¢ : [0,7] — R? 4(t) = (cost,sint),Vt € [0,7], este
un arc plan ce unegte punctul (1,0) cu (—1,0). Graficul acestui drum este
un semicerc plasat pe cercul cu centrul in (0,0) si de raza 1.

2). Yo,y € R¥ 41 [0,1] = R* (t) = (1 —t)-x+t-y,Vt € [0, 1], este un
drum ce uneste punctele x si y; graficul sau este segmentul [z, y].

2.3.20 Definitie. O multime A C R* se numeste multime conexa prin
arce daca pentru orice doud puncte x,y € A exista un drum 1 care uneste
z cuy ai Gy C A

O multime deschisa si conexa prin arce se numeste domeniu.

A C R* se numeste multime convexd dacd pentru orice doud puncte
x,y € A segmentul [z,y] C A.

2.3.21 Observatii. 1). Intuitiv o multime conexa prin arce este o multime
formata “dintr-o singura bucata”.

2). Asa cum am observat in exemplul de mai sus, un segment [z,y] C R
este graficul unui drum ¢; rezulta de aici ca orice multime convexa este
conexa prin arce.

3). Singurele multimi conexe prin arce in R sint intervalele. intr—adevér,
fie A C R conexa prin arce si fie x,y doua puncte arbitrare in A si z a.l.
xr < z < y. Deoarece A este conexa prin arce exista un drum, deci o functie
continua v : [a,b] € R — R care uneste = cu y si al carei grafic, Gy, este
inclus in A. Atunci ¢¥(a) = ¢ < z < y = ¥(b) gi, deoarece aplicatia v
are proprietatea lui Darboux, existd ¢ € [a,b] ai. 1(c) = z. Insi, cum
Y(c) € Gy C A, rezulta ca z € A. Astfel, multimea A, odata cu doua
puncte, contine si orice punct aflat intre ele; deci A este interval.

Deoarece intervalele sint multimi convexe rezulta ca, in R, multimile
conexe prin arce coincid cu multimile convexe.

In general insa, pentru k£ > 1, reciproca nu este adevarata dupa cum
putem ugor remarca din exemplele urmatoare.

2.3.22 Exemple. 1). Orice sferd deschisi sau inchisa din R* este multime
convexii (si deci conexi prin arce). Intr-adevar, fie S(z,r) C R* o sfert
deschisa cu centrul in x i de raza r; Yu,v € S(x,r) vom demonstra ca
[u,v] € S(x,r). Yw € [u,v],3t € [0,1] al w= (1 —1t)-u+t-v. Atunci
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[w—zf| = [[(1=t) utt-v)=((1=t)-z+t-2)| = [(1-1)-(u=2)+t-(v=2)| <
(1—=t) - lu—z||+t-|lv—z]| <(1—=t)-r+t-r=1rdeunde w € S(z,r).

2). Un cerc din R? este o multime conexi prin arce care nu este convex.
Intr-adevér, fie C(z,r) = {y € R? : ||y — || = r};Vu,v € C(x,r), 3o, €
[0,27) al. uw = x + (rcosa,rsina) si v = x + (rcosF,rsin3); vom pre-
supune ca o < (. Atunci aplicatia ¢ : [a, 3] — R? definitd prin 1(t) =
x4+ (rcost,rsint),Vt € [a, (] este un drum ce uneste u si v si Gy C C(z, 7).
Este evident c&, pentru u # v, [u,v] € C(z,r).

3). Graficul oricarui drum din R* este o multime conexa prin arce. Intr-
adevir, fie ¢ : [a,b] — R un drum in R* si fie Gy, = {¢(t) : t € [a,b]} graficul
acestui drum. Oricare ar fi z,y € Gy, 3¢, d € [a,b] al. x = ¢(c),y = ¥(d).
Atunci aplicatia ¢ : [c,d] — R¥ definita prin ¢(t) = ¥(t),Vt € [c, d] (restrictia
functiei ¢ la intervalul [c, d]) este un drum care uneste x cu y si al carui grafic
este continut in G.

4). Fie z si y doud puncte distincte din R”*: multimea formata din cele
doua puncte A = {x,y} nu este conexa prin arce.

5). Vom prezenta acum o multime ceva mai complicata care nu este
conexa prin arce.

Fie A = {(z,sinl): z € (0,1]} € R®. Atunci A este conexa prin arce dar
A nu este conexi prin arce.

Fie u = (:B,sin%),v = (y, sm%}) € A &i sa presupunem ca x < y; atunci
aplicatia v : [z,y] — A definitd prin ¢(t) = (¢,sin }),Vt € [z,y], este con-
tinua, are graficul in A i ¥(x) = u, ¥ (y) = v deci este un arc ce uneste u cu
v. Rezulta ca A este conexa prin arce.

Sa notam cu B = {0} x [~1,1]; se poate usor constata ca A = B U A.
S& presupunem ca A este conexa prin arce; atunci exista o functie continua
¢ :[0,1] — Aai p(0)=(0,1)si o(1) = (1,sin1) (un arc ce uneste punctele
(0,1) i (1,sin1) din multimea A). Fie u: [0,1] — R, v : [0,1] — R functiile
de coordonate ale lui ¢; atunci u gi v sint continue pe [0, 1]. Multimea B
este inchisa in R? si atunci ¢~ '(B) este inchisa si marginita in [0, 1] deci
este compacta; fie atunci ¢y = supp'(B) € ¢ '(B). Rezultd ca u(ty) =
0,v(to) € [—1,1] si Vt > to,o(t) € A de unde u(t) > 0 si v(t) = sin (ﬁ)

Considerdm un sir arbitrar (z,,) | 0; atunci, cum Vn € N*,u(to + +) > 0,
existd un sir strict crescitor (k,) T +oo al 0 = u(ty) < xx, < u(to+ +).
Functia u fiind continua are proprietatea lui Darboux si deci exista, Vn €
N*t, € (to,to + %) al wu(t,) = zy,. Atunci t, — to si deci u(t,) —
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1

u(to) = 0 iar v(t,) — v(tp). Daca alegem de exemplu x, = — atunci
nm

1
v(t,) = sin < i )) = sin(k,m) = 0 si deci v(ty) = 0; pe de alta parte daca
Ulln
P Ak, + 1
x, = ——— atunci v(¢,) = sin Whn+ D = 1 de unde v(ty) = 1 ceea
(4n+ 1)m 2

ce reprezinta o contradictie. Deci A nu este conexa prin arce.

2.3.23 Teoremi. Fie f : A C R* — R'; dacd multimea A este conexd prin
arce §i functia f este continud pe A atunci multimea valorilor lui f, f(A),
este conexd prin arce in R'.

Demonstratie. Fie u,v € f(A) doua puncte arbitrare si fie x,y € A a.l.
u = f(x) si v = f(y). Deoarece A este conexa prin arce, exista o functie
continud ¢ : [a,0] C R — R¥ ai. G, C Asi¢(a) = x,¢(b) = y. Atunci
fow:[a,b] — R este functie continud (compunerea a doua functii continue
este functie continua - propozitia 2.3.6), u = f(z) = f(¢¥(a)) = (fov))(a),v =
1Y) = FW) = (f e ¥)(B) §i Grou = (f 0 ¥)([a, W) = Fl(la,b])  F(A)

deci f o1) este un arc ce uneste u cu v si a carui grafic este inclus in f(A).g

2.3.24 Observatie. Trebuie sa remarcam aici ca imaginea printr-o functie
continua a unei multimi convexe este multime conexa prin arce dar nu este,
in mod obligator, convexa. De exemplu, la 2.3.19 punctul 1), functia ¢ duce
multimea convexa [0, 7] in semicercul ([0, 7]) care nu este multime con-
vexi. In general un drum este o functie continua pe o multime convexa (un
interval inchis in R) a carui imagine, graficul drumului, nu este in mod obli-
gatoriu convexa. Conexiunea prin arce este o proprietate topologica (legata
de structura topologica a spatiului) pe cind convexitatea este legata de struc-
tura algebrici de spatiu liniar. In cazul particular al multimii R multimile
conexe prin arce coincid cu multimile convexe ale lui R care sint intervalele.

Vom prezenta in finalul acestei sectiuni o aplicatie interesanta a teoremei
de mai sus.

Fie C = O(x,7) = {y : |ly — 2| = r} € R? un cerc cu centrul in = si
de raza r din R?; aplicatia s : C — C definita prin s(y) = 2z —y,Vy € C
asociaza fiecarui punct de pe cercul C' punctul sa diametral opus; este evident
ca s este functie continua si ca s o s este aplicatia identica pe C.

2.3.25 Teoremé. Daca f : C — R este o functie reala continua atunci
exista y € C a.i. f(y) = f(s(y)) (deci exista doud puncte diametral opuse in
care [ ia aceeasi valoare).
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Demonstratie. Definim functia g : C' — R prin g(y) = f(y) — f(s(y)),Vy €
C; se observa ca g este o functie continua. Cum C' este multime conexa
prin arce (exemplul 2.3.22, punctul 2)), teorema 2.3.23 ne asigura ca g(C)
este conexa prin arce in R deci este convexa si deci este un interval. Fie
acum y° € C; dacd g(y°) = 0 rezultd ca f(y°) = f(s(y°)). Daca g(y°) # 0,
9(s(y°)) = f(s(¥°)) — f(s(s(¥")) = f(s(x°)) = f(¥°) = —g(y°); atunci g(°)
si —g(y°) apartin intervalului g(C) si au semne contrare. Rezulta ci 0 € g(O)
gi deci existd 2° € C ad. f(2°) = f(s(z)). .
2.3.26 Observatii. 1). Daca imaginam un meridian (sau o paralela)
a globului pamintesc ca un cerc si consideram functia care da temperatura
la un moment dat in fiecare punct al acestui meridian atunci este plauzibila
ipoteza ca aceasta functie este continua. Consecinta acestei ipoteze este ca
exista in fiecare moment pe fiecare meridian (ca si pe fiecare paralela) doua
puncte diametral opuse cu aceeasi temperatura.

2). Rezultatul stabilit in teorema precedenta este o varianta simpla a teo-
remei lui Borsuk-Ulam care afirma ca pentru orice functie continua definita
pe C(z,7) = {y : |ly — z|| = r} € R® — R? exista doua puncte diametral
opuse 1n care f ia aceeagi valoare.

2.4 Aplicatii liniare

In aceasta sectiune vom studia o clasa particulara de aplicatii continue,
aplicatiile liniare.

2.4.1 Definitie. O functie T : RF — R se numeste aplicatie liniara sau
operator liniar daca conserva structura de spatiu liniar, adica daca verifica
conditiile:

1). T(z +y) = T(x) + T(y), Yo,y € R,

2). T(t-z)=t-T(x),Vo € RVt € R.

2.4.2 Lema. FieT:RF¥ = R, T = (T4, ..., T}) o aplicatie liniard; atunci:
1). T(0) = 0;
2). T(x —y) =T(x) — T(y),Vz,y € RF;
3). Vj € {1,..,1l}, functiile de coordonate T; : R* — R sint aplicatii
liniare.
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Demonstratie. 1). 7(0) = 7'(0+ 0) = 7'(0) + 7'(0) de unde 7'(0) = 0.

2). T(x—y) =T+ (-1)-y) =T(x)+T((-1)-y) =T(x)+(-1)T(y) =
T(x) = T(y).

3). Va,y € R relatia T'(x 4+ y) = T(x) + T(y) scrisi pe componente
conduce la (Th(x +vy),....Ti(z + y)) = (T1(z) + T1(y), ..., Ti(x) + Ti(y)) de
unde rezulta ca Tj(x + y) Ti(x) +T;(y),Vj € {1,....1}. La fel se arata ca
T(tx) = tT;(z), V5 € {1, ..., 1}. .

Fie {e1, ..., ex} baza canonici a spatiului R” si {fi, ..., f;} baza canonici a
lui R'; reamintim ca Vi € {1,...,k},e; = (0,...,0,1,0, ...,0) unde cifra 1 apare
pe locul ¢ iar, V5 € {1,...,1}, f; = (0,...,0,1,0,...,0) unde cifra 1 apare pe
locul j.

Daci T : R — R' este o aplicatie liniard atunci, Vo = (1, ..., ;) € R,

(1) T(x)=T (Z xiei> = inT(ei).

Vi€ {1,...k}, T(e;) € R si deci T(e;) = Y. - f.

12 k
al al PR al
ay ay - aj .
Vom nota cu Ap = T ) matricea cu [ linii gi k& coloane
1.2 k
al al IR al

Ixk
formata cu elementele af si 0 vom numi matricea asociata aplicatiei liniare

T'; observam ca aceasta matrice nu depinde decit de aplicatia 7.

Revenind in relatia (1) obtinem

—
N
N~—

k l l k

Sa notam cu Ti,...,T; functiile scalare de coordonate ale aplicatiei T
atunci din (2),

(3) Tj(x) = Zaé cx, V7 € {1, .. 1},
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de unde, daci scriem elementele din R si pe cele din R' uni-colonar, obtinem:

B\ (Shade) (o @ . ) (o
' 2 2 k
Ty(z) Zle aiz; al a} ... af Tp

si deci ajungem la formula de reprezentare a aplicatiei liniare 71"
T(z) = Ar - x,Vz € RF.

Reciproc, orice aplicatie 7 : R* — R! definiti prin T(z) = A - z,Vz € RF,
unde A este o matrice de tip [ X k, este o aplicatie liniara.

2.4.3 Exemple. 1). Orice aplicatie liniara 7' : R — R este de forma
T(x) =a-xz,Vor € R unde a € R este un numar fixat. Matricea asociata lui
T' este o matrice de tip 1 x 1 avind ca singur element pe a.

2). Aplicatiile liniare scalare T : R* — R sint de forma T'(z) = a; - 1 +
o+ oag - g, Vo = (21, .., 18) € R* unde Ay = (a1, ..., ax)1xx este matricea
asociatd. Observam ca in cazul particular k = 2, T-1(0g) = {z = (21, 72) :
aj - x1 + as - o = 0} este o dreapta care trece prin origine. In cazul k = 3,
T~1(0g) reprezintd un plan care trece prin (0,0, 0).

2.4.4 Propozitie. Orice aplicatie liniard T : R* — R este functie lipschi-
tziana deci este functie uniform continua si deci continud.

Demonstratie. Vom utiliza notatiile din relatia (1) de mai sus; Vo € R¥,

k

I1T(@)| =11 )i Tle)] < Z 1T (el - ] < Z 17 (el - -

i=1

Daca notam L = Zle | T(e;)|| obtinem ||T(x)|| < L - |jz||, V2 € R¥. Atuni,
Va,y € RY |T(2) = T(y)| = |T(x — y)| < L |lo—yl, ceea ce aratd ci T

este functie lipschitziana. .

In teorema urmatoare prezentam comportarea aplicatiilor liniare fata de
operatiile uzuale.
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2.4.5 Teorema. 1). Fie T, S : R* — R doud operatii liniare; atunci:
a). T+ S este operatie liniara si Arys = Ar + Ag.
b). t-T este operatie liniara, Vt € R si Apr =1t - Ap.
2). FieT : R¥ - R' si S : R — R™ doud operatii liniare; atunci
SoT :RF — R™ este operatie liniard si Ager = Ay - Ag.

Demonstratie. 1). Este usor de verificat ca adunarea gi inmultirea cu
scalari pastreaza liniaritatea operatiilor. Sa ne ocupam de matricile asociate.

Vo € R (T + 8)(z) =T(z) + S(z) = Ap - v + Ag -2 = (Ap + Ag) - z; pe
de alta parte, (T'+ 5)(z) = Arys - x de unde Ay g = Ar + Ag.

La fel demonstram si b).

2). Se arata imediat ca S o T este operatie liniara de la R* la R™.

Vo € R* (SoT)(x) = S(T(z)) = As-T(z) = Ag- Ap-x; pe de alti parte,
(SoT)(x) = Asor - « de unde rezulta ca Agor = Ag - Ar. .



Capitolul 3

Diferentiabilitatea functiilor de
mai multe variabile

3.1 Derivata dupa o directie

Reamintim ca daca f: ACR — Rsia € A atunci f este derivabila in a

@)~ f@) " flatt) ~ fla)

=2 = lim ;
r—a t—0 t

aceasta limita se noteaza cu f’(a) si se numeste derivata functiei f in punctul

interior a.

daca exista si este finita limita: lim,_,,

In cazul functiilor de mai multe variabile aceastd definitie nu poate fi
adaptata fara anumite precautii.

Sa ne imaginam interiorul unei camere ca pe o multime din R® in care
avem plasata o sursa de caldura. Ne punem problema studierii variatiei
temperaturii in punctele interioare. Este evident ca apropierea de sursa de
caldura va fi marcata de o crestere a temperaturii iar departarea de aceasta
sursa va insemna o scadere a temperaturii deci ca variatia de temperatura
depinde de directia pe care ne deplasam.

S& observiim intii ca, dacd a € R¥ siu € RF\ {0}, atunci dreapta care trece
prin a si are directia u este dreapta care trece prin punctele a si a+u; aceasta
dreapta este deci (a,a+u) = {(1—t)-a+t-(a+u) : t € R} = {a+t-u:t € R}.

Fie f : ACRF — R gi a € A; oricare ar fi un vector u € R¥\ {0}, cum

ae€ A3 >0al a+tue AVteRcult| <4 Intr-adevir fie r > 0 ad.
S(a,r) C Asifiet al. |la+tu—al = [t| - ||ul| < r; atunci numarul § = ﬁ
u

o4
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verifica cerinta de mai sus.

T~a+du
a+lu(—§<t<d)

B

Putem deci defini functia g : (—=9,0) — R, g(t) = f(a + tu),Vt € (—0,0);
functia g este restrictia functiei f la un segment de pe dreapta ce trece prin
a si are directia u. Vom spune ca f are derivata in a dupa directia v daca g
are derivata in origine. Mai precis:

3.1.1 Definitie. Fie f: ACRF - Ra e A gi u e RF\ {0}; dacd existd
iy fla+tu) — f(a)
directia u si notam
4
du

€ R atunci spunem ca functia f are derivata in a pe

(a) = f,(a) = lim

3.1.2 Observatii. (i). j—‘i(a) = ¢'(0).

(ii). Fiev = m - versorul asociat directiei u; atunci

df . Jlat+qgou) = f(a)
'@ = 1 o

d
= - L (a).

3.1.3 Exemple. 1). Fie T : R* — R un operator liniar; Va € R* Vu €

R*\ {0},
MO dT . T(a+tu) —T(a)
@(a) = 11_{% ; =T (u).
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Rezulta ca un operator liniar are derivata in orice punct si dupa orice directie.
Aceasta derivata nu depinde de punctul a c¢i numai de directia u.

2). Fie || - || : R* — R aplicatia norma pe R” si fie a,u € R*\ {0};
A0 gy Bt tull = ol _ (o ot ) — (0.} _
du t—0 t t—0 t
(a+tu,a+tu) — (a,a)  (a,u)
= [1m — .
=0 t(lla+ tull + [lal]) el
df| - t
Pentru a = 0, %(0) = li 1 g si aceasta limita nu exista. Deci || - || nu
U —>

are derivata in origine pe nici-o directie.

Vom prezenta acum o interpretare geometrica a derivatei dupa o directie.
Fie f: ACR? - R, a = (a1,a3) € Asi u= (uy,us) un versor din R?;

presupunem ca functia f are derivata d—(a) in a dupa directia wu.
u

In planul 210z, considerdm semidreapta (d) : = a + tu,t > 0 care
trece prin punctul a si are directia u. Fie M = (ay,as,0) originea acestei
semidrepte si fie N = (ay + tuq, ag + tug, 0) un punct pe aceasta semidreapta.
Aga cum se observa din figura urméatoare, punctele P = (ay, as, f(a1,as)) si
R = (ay + tuy, as + tus, f(ay + tuy, as + tuy)) apartin graficului functiei f,
Gy ={(x1, 22, f(21,22)) : (21,22) € A}

€3

(d)

X1

1 —a To —

a
Fie () : — = 2 planul care contine semidreapta (d) si este
1 2

perpendicular pe planul z;0xy. Planul (7), care in figura noastra contine
punctele P si R, decupeaza in pinza G arcul de curba PR = Gy N ().
Fie Q = (a1 + tuy, as + tus, f(a1, az)) proiectia lui P pe dreapta NR. In
triunghiul PQ R, dreptunghic in (), vom nota cu a; masura unghiului @;
RQ  flay +tuy, a9 + tug) — flar,a2)  fla+tu) — f(a)

PQ t t

atunci tgoy =
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Trecind la limita dupa t — 0, rezulta ca exista lim; .o oy = ag §i ca, la limita,
coarda PR tinde la tangenta in P la arcul de curba G N (7), tangenta care
in figura de mai sus este notata cu PS. Atunci tgoy = d—(a).

u

Deci, in cazul particular in care u este un versor, derivata unei functii
intr-un punct dupa directia u este tangenta trigonometrica a unghiului facut
de tangenta geometrica in punct la curba G N () cu planul z;0z,.

Ecuatia acestei tangente la curba este ecuatia parametrica a unei drepte
ce trece prin punctul P gi are directia data de vectorul (tuy,tus, SQ) =

d,
(tu, tug, PQ - tgag) = <tu1,tu2,t : d—f(a)) € R? ceea ce este echivalent cu
u

directia data de vectorul v = (ul, Us, d—(a)
u

Atunci ecuatia parametrica a tangentei in P la arcul de curba decupat de
(m) in Gy va fi:

r=(a, f(a))+1 (u, %(a)) = (a1, aq, f(a1,a2)) +1 (ul,UQ, %(a))

sau, daca scriem pe coordonate:

Ir1 = ay +tu1

(Tu) Ty = a9 + tus te R.
3 = flar,az) +t2 (a)
3 — 1, W2 du

3.1.4 Propozitie. Fie f: ACR* - R,a ¢ A asa fel incit f are derivata
in a dupd orice directie u € R\ {0}; atunci operatorul T : R¥ — R definit
prIin
df )
T(u) = %(a) , dacd u # 0,
0 , daca u =0,

este un operator omogen, adica satisface proprietatea:
T\-u) =\-T(u), ¥\ € R,Vu € R*.

Demonstratie. Daca A = 0 sau daca u = 0 conditia de omogenitate este
evident indeplinita.

Fie acum A € R\ {0},u € R*\ {0},
fla+th-u) — f(a)

T -u) = d()vu)(a):lii% t -
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:/\_hmf(a+t)\-u)—f(a)
t—0 tA

=A-T(u).

3.1.5 Observatie. In general, aga cum vom remarca in exemplul 3.1.6, acest
operator nu este aditiv si astfel nu este un operator liniar. Acest fapt se poate
interpreta geometric in cazul £ = 2 in felul urmator: desi exista tangente la
curbele Gy N, in (a, f(a)) pe toate directiile u € R*\ {0} aceste tangente nu
sint plasate intr-un acelasi plan si deci nu exista un plan tangent la graficul
lui f in punctul (a, f(a)).

Cazul particular in care operatorul 7" este liniar (caz in care vom avea si un
plan tangent la graficul functiei) joaca un rol deosebit in teoria diferentiala a
functiilor de mai multe variabile; acest caz va fi tratat in paragraful urmator.

3.1.6 Exemplu. Fie f : R* — R definita prin

xy?
fla,y) =< 2214 ,(z,y) # (0,0),

0 , (z,y) = (0,0).

Daca (zx) € R este un sir de numere reale strict pozitive convergent la 0 i
A > 0, sirul ((zx, vVAZr))ren € R? este convergent la (0, 0) iar f(xg, vAzg) —
A

Cum limita girului valorilor depinde de parametru real A rezulta ca

1+ A2
functia f nu are limita in (0,0) si deci nu este continua in acest punct.
Pe de alta parte, ¥(u,v) € R*\ {(0,0)} i(o 0) = lim f(t(u,v)) _
b ) ) ) d(u7 ’U) ) tHO t -
2
tu - t*0° v
- hm % — U ,/U/ 7£ O?
t—>0<tu +t'U)t 0 7u:O.

Deci exista derivata in origine a lui f pe orice directie (u,v) € R? fars ca
f sa fie continua in (0, 0).

Graficul functiei f are tangenta in (0,0, 0) pe orice directie (u,v) € R?\
{(0,0)}; ecuatiile parametrice ale acesteia sint:

T =1tu Tz =1tu

y=tv teR, dacau#0si { y=tv ,teR, dacau=0,v+#0.
2

z=1t% z2=0

Operatorul 7' nu este liniar; intr-adevar 7'((1,0)) + 7((0,1)) = 0 # 1 =
T((1,1)) = T((1,0) + (0,1)). Evident ca tangentele ale caror ecuatii le-am
scris mai sus nu sint plasate in acelasi plan.
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3.1.7 Teoremi (teorema de medie). Fie A C R* o multime deschisd si
fie f: A — R o functie care admite derivata tn orice punct din A pe orice
directie. Oricare ar fi a,b € A cu proprietatea ca segmentul inchis [a,b] C A
exista ¢ € [a,b] asa fel incit:
daf
f(b) = fla) = m(c)'

Demonstratie. Fie deci a,b € A cu proprietatea ca [a,b] C A si fie
functia reala de o variabila reala g : [0,1] — R definita prin g(¢t) = f(a +
t(b — a)),Vt € [0,1]; atunci g este derivabild pe [0,1]. Intr-adevir, 2° =
a+to(b—a) € [a,b] C A Vty €[0,1], si deci f are derivatd in z° pe directia

9(t) —g(to) _ . flattb—a))— flattob—a))

b—a. Atunci lim —————= = lim =
t—to t — t() t—to t— t()

— lim fla+to(b—a)+ (t—to)(b—a)) = flatti(b—a))

t—to . ot —1p

b—a)) — d

= lim fa” +s(b—a)) = () = f (2%). Rezulta ca g este derivabild

5—0 s d(b—a)

df

in orice punct t € [0,1] si ¢'(t) = (@ +t(b—a)). Putem deci sa

d(b— a)
aplicam functiei g teorema cresterilor finite a lui Lagrange. Exista atunci un
punct 6 € [0,1] a.1. g(1) — g(0) = ¢'(0). Fie c=a+ 0(b— a) € [a,b]; atunci,

(©) u

inlocuind in formula de mai sus pe g, obtinem f(b) — f(a) = W

—a
3.1.8 Corolar. Fie A C R* o multime deschisd si convexd; o functie f :
A — R care are derivata nula in orice punct din A si pe orice directie este
constanta pe A.

Demonstratie. intr—adevér, A fiind convexa, odata cu orice doua puncte
a,b € A, fa,b] C A; rezulta din teorema precedenta ca f(a) = f(b). .

Un rol important in studiul derivatelor unei functii il joaca derivatele
dupa directiile particulare date de vectorii bazei canonice.

3.1.9 Definitie. Fie f: A CRF — R gi fiea € A; Vi € {1,...,k} fie
e; =(0,...,0,1,0,...,0) unde cifra 1 este plasata pe locul i. Daca functia f ad-
mite deriwata in punctul a pe directia e; atunci aceasta se numeste derivata
partiala a functiei f in raport cu x; si se noteaza:

a0
fla) = 5 (@) = £, (o)
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3.1.10 Observatii. 1). Presupunem ca a = (aq, ..., a;) € A; atunci

8f ((Z) — lim f(al, ey @1, G+ t,ai+1, ...,ak) — f(al, ceey Ay, ...,CLk) _

8QEZ‘ t—0 t

= lim flar, oo imr, @iy aiga, o ) — flan, o @imt, @3, Qi o ag)
T;—a; :Ui _ai .

Rezulta ca derivata partiala in raport cu x; se obtine ca o derivata obisnuita
a functiei f in care fixam celelalte variabile gi derivam numai dupa x;.
2). In cazul particular k = 2 variabila curenta se noteaza cu (z,y) si

0
atunci vom obtine doua derivate partiale ale unei functii: (‘9_f si 8_f
Z )
A of 0 0
In cazul k = 3 avem trei derivate partiale notate cu —f —f si respectiv —f

ox’ Oy 0z

3.1.11 Definitie. Sd presupunem cd f : A C R¥ — R admite derivatd
partiala in raport cu o variabila x; in toate punctele interioare ale lui A;

daca functia : A — R admite derivatd partiala in raport cu variabila x;

i

. o 0 [0f 0? . -
in punctul a € A atunci — = se numeste derwata partiala
8xj 8JIZ 31’]8[E2
de ordin doi. Aceasta derivata se numeste mixtda daca © # j. In cazul i = j
32
ea se noteaza cu —.

2
%

3.1.12 Observatii. 1). Trebuie sa atragem atentia asupra scrierii derivate-
2

lor partiale mixte ; ordinea de la numitor dz;0z; inseamna ca prima

&L“j&ci
derivare s-a facut dupa x; iar a doua dupa z;. Este important de retinut ca,
0? 0?
in general, derivatele mixte nu sint egale: / # / . Astfel o functie
(%cjﬁxi Gajﬁx j

de k variabile poate avea k? derivate partiale de ordin doi.
2). In cazul k = 2 putem avea urmatoarele derivate partiale de ordin doi:

f P P 0
0x2’ dxdy’ dyox 3 oy?’
In cazul k = 3 avem derivatele de ordin doi:
*f 0*f f Pf 0*f Pf Pf 0*f i *f
0x2" OyOx’ 020x’ 0x0y’ Oy?’ 020y’ 0xdz’ Oydz P

Aga cum vom remarca in exemplul urmator, o functie care are derivata
intr-un punct dupa toate directiile nu este neaparat continua.
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Diferentiabilitatea functiilor de
mai multe variabile

3.2 Diferentiala

Rezulta din exemplul 3.1.6 ca notiunea de derivata dupa o directie nu este
cel mai bun substitut multi-dimensional pentru derivatele functiilor reale de
o variabila. Vom introduce, ca si pentru functii de o variabila, notiunea de
functie diferentiabila de mai multe variabile.

3.2.1 Definitie. Functia f : A C R¥ — R este diferentiabili in punctul
a € A dacd existd un operator liniar T : R* — R si o functie o : A — R

continud si nuld in a (ll—r}/(lz a(z) = ala) = O) a.i.
(D) f(x) = fla) + T(x —a) + a(z) - ||z — af|, Vo € A,

Daca f este diferentiabila in a spunem ca T este diferentiala functiei f in
a si notam aceasta cu df (a) =T.

3.2.2 Observatii. 1). Conditia de diferentiabilitate este o conditie locala;
astfel este suficient ca si existe operatorul liniar 7 : R® — R si o functie a
definita pe o vecinatate V' C A a lui a, continua si nuld in a, pentru care
relatia (D) sa fie verificata. Intr-adevir, in aceastd situatie putem defini

a(x) ,x eV,
a: A — R prin a(z) = f(x) = fla) =T (x — a) veA\V asa fel
|z — all ’

61



62 CAPITOLUL 3. DIFERENTIABILITATEA FUNCTIILOR

incit relatia (D) este verificata cu @ pe toata multimea A si este evident ca
@ este continua gi nula in a.

2). Diferentiala unei functii de mai multe variabile este un operator liniar,
deci o functie. Apelind la reprezentarea operatorilor liniari de la R* la R (vezi
exemplul 2.4.3, 2).), 3d = (dy, ..., d},) € R* ai., Vh = (hy, ..., h;,) € R¥,

hy
df(a)(h) =T(h) = Ar-h=(dy,....,dx) - | * | =dih1 + ... +dihy = (d, h).
hy

3). Daca T : R*¥ — R este un operator liniar si a € R* putem scrie:
T(z) = T(a) + T(x —a) +0 - ||z — a||, Vo € R¥. Concluzia este ci T este
diferentiabil in toate punctele lui R¥ si diferentiala sa dfT'(a) = T este aceeasi
in toate punctele a € R”.

3.2.3 Teoremi. Fie f : A CR* - R sia = (a1,...,ax) € /i; atunci
urmatoarele afirmatii sint echivalente:

(i) f este diferentiabild in a.

(i) 3d € R*, 33 : A CR* = RF o functie continud si nuld in a a.i.:

f(z) = fla) + (d,x — a) + (B(z),2 — a),Vz € A.
Demonstratie.
(i) = (ii): Presupunem c& f este diferentiabild in a si fie T : R* — R
un operator liniar si o : A — R continua si nuld in a a.i.
(D) f(@) = fla) + T(x — a) + a(z) - [l — af|, Vo € A.

Atunci existd d € R* ai. T(h) = (d, h),Yh € R” (vezi observatia 3.2.2, 2).).
Fie 5 : A — R* definitd prin:

a(x)

Bx) = Ha:—a||-($_a> T a Vr € A.
0,...,0) ,z=a
Atunci ||B(z)]| = (@) |z — a|| = |a(z)| — 0, deci 3 : A — R* este o

o el
functie continua si nula in a.
a(z)

Deoarece ((z),z —a) = H i (x —a,z—a) = a(x) - ||z — al|, atunci
r—a

relatia (D) ne conduce la (ii).
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(ii) = (i): Din (ii) rezulta ca putem construi operatorul liniar 7' : R* —
R definit prin T(h) = (d, h),Vh € R*.
Fie functia o : A — R definita prin

M@:{nﬁm«mww—@ eta,

0 ,z=a.

Remarcam atunci ca este verificata relatia (D).
Folosind inegalitatea lui Cauchy (vezi ultima inegalitate din propozitia
1.1.18), obtinem:

()] < - 18@)] - 1z — all, Yz # a

| — all
de unde rezulta ca lim, ., a(x) = 0 si deci functia f este diferentiabila in a.

3.2.4 Teoremi. Fie f : A C RF — R o functie diferentiabild in a € /Ci;
atunci:

1). f este continud in a.

2). Oricare ar fi u € R¥\ {0} f are derivatd in a dupd directia u si
df
—(a) =(d .
L 0) = (@)

Demonstratie. Fie operatorul liniar 7 : R* — R si functia o : A — R
continua si nula in a a.i.

(D) flx)=fla)+T(x —a)+ax) ||z —al,Vr € A.

1). Deoarece orice operator liniar este functie lipschitziana, deci uniform
continud si deci continud pe R* (propozitia 2.4.4), din relatia (D) obtinem:
lim, .(f(z) — f(a)) = lim,—, T'(z — a) + lim,_, a(z) - ||x — a|| = 0. Rezulta
ca f este continua in a.

2). Oricare ar fi u € R*\ {0} existd § > 0 a.i. oricare ar fi t € R cu
|t| < 0,a+ tu € A; din relatia (D) obtinem atunci

iy fla+ tut) — fla) _ lmy T (tu) + oz(at—l— tu) - [[tul] _

= lim (T(u) + % ~ala+tu) - HuH) =T(u).

t—0

d
Deoarece T este diferentiala functiei f in a rezulta ca %(a) = (df(a))(u). 4
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3.2.5 Observatie. Functia din exemplul 3.1.6 are derivata in origine dupa
orice directie (u,v) € R? insi aceasta derivati nu este functie liniara de (u, v)
si deci f nu este diferentiabila in (0, 0).

3.2.6 Corolar. Dacd f : A C R¥ — R este diferentiabild in a € A atunci
f are deriwate partiale in a in raport cu oricare variabila x; $i

ggfi (a) = (df (a))(e:),Vi = 1,.... k.

3.2.7 Observatii. 1). Fie f : A C R* — R o functie diferentiabili in a € A
si fie T = df(a); atunci 3d = (dy, ...,dy) € R* ai. T(h) = (d,h),Vh € RF.
Rezulta ca T'(e;) = (d, e;) = d;, Vi = 1, ..., k. Din corolarul precedent obtinem

cad; = 5 ——(a),¥i =1,..., k. Atunci matricea de reprezentare a operatorului
L
. af of y : : y
liniar 7" este Ap = | =—(a), ..., =—(a) . Aceasta matrice se mai noteaza
O " Oy 1xk

cu V f(a) gi se numeste gradientul lui f in a. Rezulta atunci ca diferentiala
lui f in a se reprezinta prin:

of
833'1

OF @by + o+ 2L ()b = (VF(0),B) VR = (b, ) € RE.

&(a)(h) = o

2). Daca o functie este diferentiabila intr-un punct atunci diferentiala
ei este unica; intr-adevar, din observatia precedenta, diferentiala este unic
determinata de derivatele partiale ale functiei.

3). Definim Vi = 1,..., k, functiile f; : R*¥ — R prin fi(z) = (z,¢;) =
x;, Vo = (xq,...,2%) € R*. Atunci fiecare f; este un operator liniar si deci
este diferentiabil in orice punct iar df;i(a) = f; in orice punct a € R* (vezi
observatia 3.2.2, 3).). Vom conveni sa notam df;(a) = dz;,Vi = 1,...,k si
atunci dz;(h) = h;,Vi =1, ... k.

Atunci diferentiala unei functii f : A € R*¥ — R intr-un punct interior al
multimii A se va scrie:
of

af K
3x1( a)dxy(h) + ... + a—xk(a)dmk(h),Vh eR

df (a)(h) =
sau, daca o scriem functional,
of .

of

df (a) =
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4). In teorema 3.2.4 am remarcat c& o functie f diferentiabild intr-un
punct a interior multimii sale de definitie A C R* admite derivati dupi orice
directie v € R*\ {0}. Utilizind observatiile de mai sus putem scrie:

= (Vf(a),u) = IVf(a)|| - [[ul - cos

TR

unde f este unghiul dintre vectorul gradient V f(a) si vectorul directie u € R*.

Vom prezenta acum o interpretare geometrica a diferentialei unei functii
de doua variabile.

Fie f : ACR? - Rsia= (a,as) € A; presupunem ci functia f este
diferentiabila in a; atunci dupa corolarul 3.2.4, f are derivata in a dupa orice

d,
versor u = (up,ug) € R*\ {0} si d—f(a) =df(a)(u)
u
Ca gi atunci cind am prezentat o interpretare geometrica a derivatei dupa
o directie, vom considera in planul 210z, semidreapta (d) : © = a + tu,t > 0

care trece prin punctul a si are directia wu.

. T —a; T — Q2 . o . o .
Fie (7T) : = planul care contine aceasta semidreapta si
Ul U9

este perpendicular pe planul 210z5. Planul (7) decupeaza in pinza Gy un
arc de curba care pleaca din punctul P = (ai,aq, f(a1,a2)) € Gy si care
este plasat pe Gy. Asa cum am observat, exista tangenta la acest arc de

curba si are directia data de vectorul v = (ul, Ug, d—(a)) . Deoarece functia
u

este diferentiabila in a, d—(a) variaza liniar cu u (corolarul 3.2.4) si atunci
u

directiile v se plaseazi pe un plan cind vectorul u parcurge versorii lui R

Intr-adevir, in acest caz: v = ( uy, ug, —— (@) -uy +=—(a)-uy | =
ox T 8.’13'2

_ <1 0, gfl( )) +uy - (0 1, aan( )) (1= uy — ) - (0,0,0), adica

0
v descrie un plan care trece prin origine si prin punctele (1, 0, a—f(a)> si

<01 aaj;( )) i
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Daca eliminam parametrii u; si vy din ecuatia parametrica a acestui plan
obtinem ecuatia sa explicita

(a) - x1 + g—i(a) - Ty,

of

() 7y = df(@)(r1,72) = 5

Deoarece directiile tangentelor in P la arcele de curba de pe graficul lui f
(dupa toate directiile u posibile) sint coplanare, aceste tangente sint si ele
coplanare gi genereaza planul tangent la suprafata Gy in punctul P.

Rezulta ca daca o functie f este diferentiabila intr-un punct a atunci
graficul sau admite un plan tangent in punctul (a, f(a)) si acesta este paralel
cu planul (A) : x5 = df (a)(z1, x2).

Ecuatia planului tangent in P se obtine prin translatia planului (A) cu
vectorul (ay, as, f(ay,as)) ceea ce ne conduce la ecuatiile parametrice:

ZU1:(11+U1
To = Qo + U

R

o o U, U €

x3 = f(a1,a2) + a_jl(a) Uy + a—i(a) " U

Daca eliminam parametrii obtinem ecuatia explicita a acestui plan tangent:
0 0

(T) z3 — f(a1, az) :8—i(a)'($1—a1)+8—9{2(a)'(952—@2).

Aga cum am observat, existenta derivatelor partiale ale unei functii (chiar
existenta derivatelor dupa toate directiile) intr-un punct nu antreneaza dife-
rentiabilitatea functiei. Putem totusi formula o conditie suficienta de dife-
rentiabilitate in limbajul derivatelor partiale.

3.2.8 Teorem3 (criteriul de diferentiabilitate). Fie f: ACRF - R,a e A
sir >0 a.i. sfera deschisa S(a,r) C A. Daca f admite derivate partiale
in raport cu toate variabilele in toate punctele sferei S(a,r) si acestea sint
continue in a atunct f este diferentiabila in a.

Demonstratie. Vom face demonstratia in cazul particular £ = 2; in cazul
general demonstratia nu comporta decit dificultati de scriere.
Presupunem deci ca f : A C R* — R, (a,b) € A si S((a,b),7) C A; de

asemenea presupunem ca exista a—f, g : S(a,r) — Rgica
ox’ Oy
. of of : . of of
1 lim 2 (e,y)=2L Y (w) = Y a by,
- Jm oy =g(eb)si | m o (z,) By (a,0)
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Fie (z,y) € S((a,b),7) \ {(a,b)} un punct fixat pentru moment; atunci:

(2) f(@,y) = fla,b) = [f(z,y) = [z, )] + [f(2,b) — f(a,b)].

Functia de o variabila ¢ = f(z,-) : [b,y] — R este derivabila pe [b,y| si
of

g (t) = a—(:v, t),Vt € [b,y]. Atunci putem sa aplicam acestei functii teorema

lui Lagrange; deci exista d(x,y) €]b,y[ a.i.

3) Fley) — Fa.b) = g—;‘w@,y» (b,

Schitam mai jos pozitia punctelor care apar in demonstratie.

Yy

(z,d(z,y)) -
(x,b)>(l» Y

o],

\ (2‘@:), b
NS

In mod aseminitor considerdm functia de o variabild h = f(-,b) : [z, a] — R;

of

h este derivabila pe [z,a] si h/(t) = %(t,b),w € [z,a]. Deci exista c(z) €
|z, al a.l.
(@ Fa.b) = fla.b) = Pela). ) (2~ a).
Inlocuind (3) si (4) in (2) obtinem:
Fa) = Fa,) = S e)0) - (0= ) + o) (0 - 1) =
of of
= 55 (®0) @ =a)+ 5 o(a,b) - (y = b)+

#{ G n - Fan)| o - 0+ |Fwdwn) - L] w-o.
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Deoarece (x,y) este arbitrar in S((a,b),r) \ {(a,b)}, putem defini acum:

0 o
Bz, y) = { a_£(0($)>b) - a—i(a,b) ,(z,y) # (a,b) S
0 ,(z,y) = (a,b)
of of
Bol,y) = a_y(x,d(a:,y)) - a—y(a, b) (z,y) # (a,b)
) (.Z', y) = (Cl, b)
Astfel exista d = (%(a, b), g_i(% b)) € R? si o functie vectoriala

B:S((a,b),r) — R% B = (81, B) ai., Y(z,y) € S((a,b),r),
f(x,y) = f(a’b) + (d’ (ZL‘ -4,y — b)) + (ﬁ(x,y), (l’ —a,Y— b))

Aga cum am remarcat in observatia 3.2.2, 1)., conditia de diferentiabilitate
este locala; deci este suficient ca relatia de mai sus sa fie verificata pe o
vecinatate a lui (a,b).

Atunci este suficient sa demonstram ca [ este continua in (a,b) pentru
ca sa rezulte, din teorema 3.2.3, (ii), ca f este diferentiabila in (a, b).

Din (1), Ve > 0,30 > 0, < r a.d. ¥Y(z,y) € S((a,b),0),

af

5) - Fan) <
(6) '%(w,y)—%(a,b)‘ <e.

Dar V(z,y) € S((a,b),6), (c(x),b) € S((a,b),0) si (z,d(z,y)) € S((a,b)u, J).

Rezulta atunci din definitia functiilor 8; si G2 si din relatiile (5) i (6) ca
Bi(z,y) — Pi(a,b)] <esi |Bo(z,y) — Bala,b)] <e,

ceea ce arata ca lim(g y)—(ap) 41(2,y) = fi(a,b) = 0 si lim y)—(p) Go(2,y) =
Ba(a,b) = 0. .

Criteriul de diferentiabilitate din teorema precedenta sugereaza introdu-
cerea unei clase importante de functii diferentiabile.
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3.2.9 Definitie. Fie D C R* o multime deschisd; spunem cd o functie
f: D — R este de clasd C' pe D sau ca f € CY(D) dacd toate derivatele
partiale ale lut f exista si sint continue in toate punctele multimii D.

Utilizind criteriul de diferentiabilitate din teorema 3.2.8, obtinem:

3.2.10 Corolar. O functie de clasd C' pe D este diferentiabild in toate

punctele multimit D.
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Diferentiabilitatea functiilor de
mai multe variabile

3.2 Diferentiala

Diferentiabilitatea functiilor vectoriale

Sa consideram acum pe rind conceptele de derivata dupa o directie, dife-
rentiabilitate si diferentiala pentru functiile vectoriale. Aceasta ofera un bun
prilej de reluare si de fixare a notiunilor si rezultatelor deja prezentate pentru
functiile scalare.

Derivata dupa o directie
3.2.11 Definitie. Fie f: ACR* 5 R, a€ A siu e R" \ {0}; spunem ca
f are derivata in a dupa directia u daca exista

L a) = tim = [f(a+ tu) — f(a)] € B

Expresia din paranteza patrata de mai sus este un vector iar fractia din
fata este un scalar; vom conveni totusi, pentru asemanarea cu cazul scalar,
e df oo flattu) — f(a)
sa scriem d—(a) = lim :
u

t—0 t

3.2.12 Observatii. 1). Daca (fi,..., fi) sint functiile scalare de coordo-
nate ale lui f atunci, din teorema 2.2.3 stim ca limita functiei vectoriale

70
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t —
fla+tu) — f(a) exista daca gi numai daca, Vj € {1,...,1}, exista limita
fila+tu) — f;(a)

are derivata in a dupa directia u gi in plus:

functiei scalare , pentru t — 0, deci daca si numai daca f;

dfx
s (@@
%(a) = :
Vi)
du
2). In cazul particular cind u = €;,i = 1, ..., k, obtinem
df ofi
d_ei(a) . (a)
df : ;
%(a) = : = :
o\ D)\ P
dei axl
3). Daca k =1 atunci Vj =1, ..., [,
fi(a)
df; ; t)— f; d
i(a) = lim fila+t) = fila) = f/(a) si deci —f(a) = :
d@l t—0 t J €1 ,
. fi(a)
In acest caz vom conveni sa spunem ca functia f este derivabila in a; notam
g (1@
f(a) = d—(a) = : € R! si 0 numim derivata functiei f in a.
€1
fi(a)

3.2.13 Definitie. Sa presupunem ca functia vectoriala f are derivate dupa
toti vectorii bazei canonice {ey, ...,er} in a; atunci matricea

228 Ny
Jy(a) = : :
of ofi
8_1‘1(&) e 8_%@) -

se numegte matricea jacobiana atasatd functiei f in punctul a (numele
este dat in onoarea matematicianului german CARL JACOBI).
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In cazul particular | = k aceasta matrice este patratica; determinantul
asociat ei

df1 df1
det Jp(a) = = h () = .
D(xy, ..., zx) 3f/<; 8fk
a:Cl() axk()

se numeste determinantul functional sau jacobianul lui f in a.

Este evident ca, si pentru functiile vectoriale, existenta derivatelor dupa orice
directie intr-un punct nu va antrena, in general, continuitatea.

Diferentiabilitatea

3.2.14 Definitie. O functie f : A C R¥ — R! este diferentiabili ina € A
dacd existd un operator liniar T : R* — R! si o functie o : A — R! continud
st nula in a a.i.

(D) f(@) = fla) + T(x —a) + [|x — al| - a(z), Vo € A.
Operatorul T' se numegte diferentiala [ui f in a si se noteaza df (a) =T.

3.2.15 Observatii. 1). Relatia (D) de mai sus este vectoriala (o relatie
intre vectori din R?).
2). Functia f este diferentiabila in a daca si numai daca exista un operator
f2) = fla) ~T(r—a)

[ = all

liniar 7' : R* — R’ ai. lim,_,
Daca in relatia (D) egalam componentele vectorilor din cei doi membri
obtinem:

3.2.16 Teorema. Functia f: A C RY = R f = (f1, ..., i), este diferenti-
abild in a € A daca st numai daca, V5 € {1,...,1}, f; este diferentiabila in a

$1
oh
df1(a)(h) Z oz,

df (a)(h) = : = =
dfi(a)(h) B fl
6331-( a)h;

i=1
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9Ny of
8_:151(a) a—xk(a) hy
= : ; : = Js(a) - h,Vh € R".
8fl afl hk
o (@) ... . (a) » kx1

3.2.17 Observatii. 1). Matricea jacobiana a functiei f in a este chiar ma-
tricea asociata diferentialei lui f in a (diferentiala privita ca operator liniar).
Rezulta ca diferentiabilitatea intr-un punct antreneaza existenta matricii ja-
cobiene in acel punct.

2). Dacd k =1 atunci f: ACR — R', f = (f1,..., fi) este diferentiabila
inae A daci si numai daca, Vj =1,...,1, f; : A C R — R este diferentiabila
in a deci dacd si numai daca f; este derivabila in a si

fi(a)
df (a)(h) = : -h,Vh € R.

fi(a)

Rezulta ca, in acest caz, f este diferentiabila in a daca si numai daca f
este derivabila in a si df (a)(h) = f'(a)-h,Vh € R (vezi observatia 3.2.12, 3)).

In cazul k > 1 existenta matricii jacobiene intr-un punct nu antreneaza,
in general, diferentiabilitatea in acel punct; totusi tinind cont de teorema
de mai sus si de criteriul scalar de diferentiabilitate, putem obtine varianta
vectoriala a acestui criteriu.

3.2.18 Teorema (criteriul de diferentiabilitate). Fie f : A C RF — R! gi
a € /Ol; daca matricea jacobiana a lui f exista pe o vecindatate a lui a si este
continud in a (toate derivatele partiale care formeaza aceasta matrice sint
continue in a) atunci f este diferentiabila in a.

3.2.19 Definitie. O functie vectoriala f definita pe o multime deschisa
D C R este de clasa C' pe D, sau f € CY(D), dacd matricea jacobiand a
functier f exista si este continua in toate punctele lui D.

3.2.20 Corolar. O functie vectoriald de clasi C' pe multimea deschisd
D C R” este diferentiabild in toate punctele lui D.
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3.2.21 Exemple. 1). Fie f : [0, +00[x[0, 27[— R?, definita prin f(r,u) =
(rcosu,rsinu),V(r,u) € [0,4+00[x[0, 27[; f reprezinta trecerea de la coordo-
natele polare la cele carteziene in plan; f este diferentiabila pe |0, +00[x]0, 27].
cosu —rsinu
sinu  rcosu
detJ; = r iar diferentiala lui f intr-un punct (r,u) va fi:

Matricea jacobiana a lui f este J; = , jacobianul lui f este

it = (

cosu - dr —rsinu - du
sinu - dr +rcosu - du

2). Trecerea de la coordonatele polare la cele carteziene in spatiu este
data de functia f : [0, +-00[x [0, 27[x [T, +5] — R3,
f(r,u,v) = (rcosucosv, rsinucosv, rsinv),
Y(r,u,v) € [0, +00[x[0, 2m[x[-F, +5]

[ este o functie diferentiabila pe ]0, +-00[x]0, 27[x] — 7, 4+7F[. Matricea

COSUCOSVY —TSiNuCoSY —T COS U Sin v
jacobiana a lui f este Jy = | sinucosv rcosucosv —rsinusinv
sin v 0 T COSV

Jacobianul transformarii este det.J; = r? cos v. Diferentiala functiei f este

CcosSuCcosv -dr —rsinucosv - du — rcosusinv - dv
df (r,u,v) = | sinucosv - dr +rcosucosv - du — rsinusinv - dv
sinv - dr 4+ rcosv - dv

Operatii cu functii diferentiabile

3.2.22 Teoremi. Fie f,g : A C R* — R' doud functii diferentiabile in
a€ fi; atunci:

1). f+ g este diferentiabila in a si d(f + g)(a) = df (a) + dg(a).

2). t- f este diferentiabild in a si d(t- f)(a) =t-df(a).

3). (f,g9): A — R este diferentiabila in a si

d(f,9)(a) = (df (a), g(a)) + (f(a), dg(a)).

Demonstratie. Fie T = df(a) : R* — R’ diferentiala lui f in a si S =
dg(a) : R*¥ — R! diferentiala lui ¢ in a; T si S sint operatori liniari. Fie
a:A—R'sif:A— R doud functii continue si nule in @ a.i.:

(Dy) flz)=fla)+T(x—a)+ |z —al - a(z),Vr € A.
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(Dy) 9(x) = g(a) + S(x — a) + [lz — al| - B(x), Ve € A,

Atunci (f +9)(@) = (f +9)(a)+ (T +8) (@ —a) + o —al|- (a+ F)(x), ¥z € A.
Deoarece T+ S este operator liniar iar functia o + (3 este continua si nula
in a rezulta ca f + g este diferentiabila in a si ca d(f +g)(a) =T+ S =

df (a) + dg(a).
La fel se demonstreaza si 2).
3). Din (Dy) si (D,) obtinem, Vo € A\ {a},

(f(x), g(x)) = (f(a), g(a))+(f(a),S(x—a))+(T(x—a),g(a)) +7(x)- |z —all,

unde
) = (f(a), Bla)) + —

|l = all

+a(@),g(a)) + (alz), Sz — a)) + (a(x), B(z)) - [l — af.
Definim v(a) = 0 i atunci v: A — R.
Fie R: R* — R, R(h) = (f(a), S(h)) + (T(h), g(a)); atunci R este opera-

tor liniar si

(f.9)(x) = (f,9)(a) + R(z — a) + v(z) - ||z — al|,Vz € A.

Ramine sa demonstram ca 7 este continua in a. Vo € A\ {a},

: |-||T(fff—a)||~HS(fv—a)H+||T($—a)\|-\lﬁ(:r)ll+

[ = al

Hla@)[ - gl + lla@)l - 1S = a)ll + [le@)[| - |5)] - [+ — all
In propozitia 2.4.4 am aratat ca orice operatie liniara este lipschitziana; fie
deci Ly, Lg >0 ali. [|[T(x—a)|| < Ly-||lxr—al s |S(x—a)|]| <Ls-|z—a.
Deoarece « si 3 sint functii continue gi nule in a, lim,_, ||a(z)|| = ||a(a)|| =
0 si lim, ., || B(x)]| = ||B(a)|| = 0. Rezulta imediat ca lim,_, y(x) =0 = 7y(a)
ceea ce arata ca (f,g) este diferentiabila in a.

d(f,9)(a) = R = (f(a),5) + (T, 9(a)) = (f(a),dg(a)) + (df (a),9(a)). 4

3.2.23 Teorema. Fie f : A C ]R]z —R'sig: BCR' - R™a.i f(A)C B;
daca f este diferentiabila in a € A iar g este diferentiabila in b = f(a) € B
atunci go f : A — R™ este diferentiabild in a si

d(g o f)(a) = [dg(f(a))] o df(a).

(T'(x —a), S(x — a)) + (T(x — a), B(x))+

@) < [F (@Il 16(x) ]|+
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Demonstratie. Fie 7 : R* — R’ S : R' — R™ operatori liniari a.i. df(a) =
T si dg(f(a)) = S; fie a : A — R continud si nuld in a 5i §: B — R™
continua gi nula in b = f(a) a.l.

(1) f(x) = fla) + T(x —a) + |lz — al| - a(z), Vo € A,

(2) 9(y) = g(b) + Sy —b) + lly = bl - B(y),Vy € B,
Yz € A,y = f(z) € B si atunci, din (2),
3)  9(f(x) =g(f(a)) + S(f(z) — fa) + lf (z) = fla)|| - B(f (x))-
e i T s A o Pt i (1) o e cont
(4) 9(f(x)) = g(f(a)) + S[T(x — a) + [l — al| - a(x)] +
+T(x —a) + [lz —all - a(x)|| - B(f (z)) = 9(f(a)) + S(T(x — a))+

Hlo =l - (S(ao) + | Lo T - @)+ o) - sl

Fie atunci 7 : A — R™ definita prin

1

M-T(m—a)+a(x)

B(f(2) o #a

" (z) = { S(a(z)) + '

Atunci (4) se scrie
(go f)(x) = (g0 f)la) + (SoT)(x—a)+[lx—al-~(z), Ve e A

Cum SoT : R¥ — R™ este operator liniar, pentru a demonstra ci g o f este
diferentiabila in a, este suficient sa aratam ca v este continua in a.

Deoarece a este continua si nula in a iar S este continuu pe R' (propozitia
2.4.4) gi se anuleaza in 0 rezulta ca

(5) lim S(a(z)) = 0.

r—a
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Utilizind iar propozitia 2.4.4, rezulta ca T este lipschitzian; exista deci
L>0al |T(x—a)|=|T(x)—T(a)|]| < L-|x—al,Vz € A. Atunci

(6) ‘Hx—iaH-T(ﬂﬁ—aHa(fC) B @I < (L A+ [lat@) ) - 180 ()]

Functia f este diferentiabila in a si deci este continua in a (corolarul 3.2.4,
1).); deoarece 3 este continua si nula in b = f(a), rezulta ca

g ln B((2)) = B(f(a)) = 0.
Atunci, din (5), (6) si (7) rezulta ca lim,_,y(z) = 0 = y(a).
3.2.24 Corolar. In ipotezele teoremer precedente

Jgop(a) = J4(f(a)) - Js(a).

Demonstratie.
Din teorema 3.2.16 stim ca d(g o f)(a)(h) = Jyop(a) - h,¥h € R".
Din teorema precedentd, Vh € R, d(g o f)(a)(h) = [dg(f(a)) o df (a)] (R) =
dg(f(a))(df(a)(h)) = Jy(f(a))- J¢(a) - h, de unde rezulta relatia din corolar.
De altfel, rezultatul acestui corolar este i consecinta imediata a teoremei
2.4.5, 2)., unde se aratd ca matricea asociatd compunerii a doua aplicatii
liniare este produsul matricilor asociate a celor doua aplicatii.
Sa consideram functiile de coordonate ale aplicatiilor vectoriale f si g:
f=A s f1)9="(91,---, gm); atunci relatia din corolar se scrie:

(g1 0 f) d(g1 0 f)
8—1;1(@ . 3—:L‘k(a)
O(gm 5 ) | A(gm : f) )
8—331(a> .. a—xk(a)
dg1 dg1 df1 df1
@) - @) (5w )
| ogu, g, oh o

OGm |
@) o G ) \ G . 2

Elementul de pe linia ¢ si coloana 7 din matricea produs se obtine inmultind
linia ¢ din primul factor cu coloana j din factorul doi; astfel obtinem, Vi =
1,....m,5=1,..k:
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d(gio f) _ dg;

(D0) | RG0) = R @) ot @)+t g (@) (@

3.2.25 Cazuri particulare.
1). i m=1

In acest caz (go f)(x1,....x1) = g(f1(x1, ooy Tp)s ooy fil@1, oy ).
Formula (DC') devine

dgof) dg

(a) = 24 dfr 9y
c%j 3y1

(@) Gor@) 4t (@) @) Y5 =1,k

Fie acum k = [ = 2 si functiile f : ACR2—>R2 ,g: BCR? >R,
(:v Y) s (u(z,y),v(z,y)) € R? (u,v) ¥ g(u,v) € R. Functia compusi

= go f este definitd prin h(z, v) = 9 (@) = glule,y),o(x,y)), Y(r,y) €
A Daca (a,b) € A, f este diferentiabild in (a,b) si g este diferentiabila in
f(a,b) € B atunci dh(a, b) = dg(f(a,b)) odf(a,b) ceea ce antreneaza pentru
matricile jacobiene: Jy(a,b)ixe = Jg(f(a, b))lxg Jg(a,b)axs. Scriind explicit
aceasta ultima relatie, obtinem:

8u( b) 8u( )
ah a, @ a g @ a @ a . % a’ a_y aj’
Jdy
de unde:
oh Oy ou dg ov
%(G, b) - %(f(aﬂ b)) ' %(C%b) v (f(a b)) a_x<a7b)
oh dg 8u dg v

y . ) 9y - y
Dacid am presupune, in plus, ca exista a—(u,v), a—(u,v) pe o intreaga
u v

vecinatate a lui f(a,b) si sint la rindul lor diferentiabile in f(a,b) iar f
admite derivate partiale de ordin doi, atunci am putea aplica formula de
derivare de la functii compuse pentru a obtine derivatele de ordin doi ale lui
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h in (a,b); vom prezenta mai jos calculul acestor derivate fara a mai pune in
evidenta punctele in care sint calculate (derivatele lui h gi cele ale lui u si v
sint calculate in (a,b) iar derivatele lui g in f(a,b)):

&h _(0g Ou &g Ov\ du 8y Pu,
ox? ou? Ox Ovou Ox/) Ox Ou 0Ox?

Judw D o 0x) dr o 0a

&h :(@.@+ Py ~@>-8—“+@~ Ou
Jyox ou? Qy Ovou Oy) Oxr Ou Oyor
<029 ou 8_2g 81}) ov  9dg 0™

8uc%.8_y+c%2.6_y Oz %.&y@x

(829 ou 0% 81}) ov  Og 0%

O _ (0% ou g v\ du 9y Ou
oxdy  \ou? Ox Ovou Ox) Oy Ou 0xdy
0% 0w 0% o0\ v By O
oudv Ox Ov? Ox) Oy Ov 0Oxdy
Oh _ (&g ou g Ov\ Ou by Ou,
oy2  \ou? dy Ovou Oy) Oy Ou Oy?

Fg ou g v\ v oy o
oudv QJy ov? dy) Oy v 0y?



Capitolul 3

Diferentiabilitatea functiilor de
mai multe variabile

3.2 Diferentiala
3.2.26 2).

Fie f: ACR —R'si g: BCR'— R cu conditia de compunere f(A) C B;
atunci f(t) = (f1(t), ..., fi(t)),Vt € A, iar functia compusa este
h:ACR — R, A(t) = g(fi(t),..., fi(t),Vt € A; h este deci o functie reala
de o variabila reala.

Fie a € /i; daca f este diferentiabila in a i g este diferentiabila in f(a) €
B atunci: dh(a) = dg(f(a)) o df(a) iar matricile jacobiene verifics relatia
Jp(a)1x1 = Jy(f(a))ixi - Jp(a)ix1 ceea ce explicit se scrie:

fi(a)
@) = (320 - uw)-| .
fi(a)
de unde obtinem
H(a) = g—i(f(a)) Fia) 4ot g—;<f<a>> Fl(a).

O situatie concreta in care putem intilni o astfel de compunere este aceea
in care A este un interval inchis din R, f este o functie continua (deci un
drum sau un arc) cu graficul intr-o multime din R? (care poate fi gindita

80
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ca interiorul unei incaperi) iar g reprezinta temperatura in punctele acelei
incaperi. Functia g o f reprezinta temperatura de-a lungul drumului f iar
derivata acesteia reprezinta variatia temperaturii pe arcul f.

Fiel =2, ¢0: ACR — R*>o(t) = (ult),v(t)) si f: BCR* - R
al. @(A) C B; atunci functia compusa este h = fop : A C R —

h(t) = f(u(t),v(t)),Vt € A. Dacit ¢ este diferentiabild pe A (ceea ce,
dupa observatia 3.2.17, 2), este echivalent cu a spune ca ¢ este derivabila pe
A) . f este diferentiabild pe B iar cp(A) C B atunci h este derivabild pe A si

h'(t) = gz( (t),v(t)) - u'(t) + g—v(u(t),v(t)) ' (t),Vt € A.

Dacd a = (a1, as) € B (deci Ir > 0 ai. T(a,r) C A), u= (u,us) € R\ {0}
si 0 = g atunci ¢ = (o1, ¢2) [—6,6] — R ¢(t) = a + tu,Vt € [~6,]
este un drum al carui grafic este un segment ce trece prin a si are directia wu.
Daca f este diferentiabila in a atunci h = f o ¢ este derivabila in 0 si, dupa
formula de derivare de mai sus,

0 0 0
H10) = 52 (@) 40 + 5 (a) - h(0) = S e, 0a) o + 5 () =

df
f(a)(w) = ()
Rezulta ca derivata functiei f in a dupa directia u este derivata unei functii
compuse.

3). [k=21=3m=1]|

Fie f = (fi, f2 f3) : A € R® - R’ g : BC R - Rcu f(A) C
B; daca f este diferentiabila in punctul a € A si g este diferentiabila in
fla) € B atunci functia compusi h = go f : A C R? — R, h(z,y) =
g(fi(z,y), fa(x,y), f3(x,y)) este diferentiabila in a si dh(a) = dg(f(a))odf(a)
de unde obtinem Jy(a)1x2 = J4(f(a))1x3 - Jr(a)sx2 sau scris dezvoltat (fara
a mai pune in evidenta punctele in care sint calculate derivatele partiale):

o5 oh
or O
(2 Y (22 20 ooy |0k 8
or 0y) \Oyi Oy Oys or 0
ofs Oy

8x8_y
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Putem atunci obtine derivatele partiale ale functiei compuse h:

oh 09 Ofi 09 0Ofs g 0

%_83;1 ox 8_y2 ox 8_y3 ox
oh 99 of g oh 9y i,

dy By By By, Ay  dys Oy

3.3 Diferentiale de ordin superior

Derivate mixte

Aga cum am mentionat deja, derivatele partiale mixte de ordin doi ale unei
functii de mai multe variabile nu sint, in general, egale.

In teorema urmétoare prezentam doui criterii (conditii suficiente) pentru
ca derivatele mixte sa coincida.

3.3.1 Teoremi. Fie f: ACRF SR giae A.
1). Criteriul lui Schwarz.

o2f O
8371'8%]'7 a.ﬁl]]aﬂfl

Fiei,j € {1,....k}; daca exista pe o vecindtate a punc-

tului a si sint continue in a atunci

et B
8:61'(93@- B 8;6]8.%2 ’

2). Criteriul lui Young.
0
Daca, Vi € {1,...,k}, exista 8f

)

pe o vecinatate a punctului a si este

diferentiabila in a atunci

0% f (@) = 02 f
axi@xj N 81’38361

(a),Vi,j € {1,....k}.

Demonstratie. Observam intii ca demonstratia se poate reduce la cea
din cazul k = 2. Intr-adevar, in loc sa studiem problema pentru functia de
k variabile f consideram functia de doua variabile

(.fi, l’j) — f(al, ey A1, Ly Ay 1y --ey Clj_l, ZL’j, aj+1, ceey ak)
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ale cdrei derivate de ordin doi dupa x; si x; in punctul a coincid cu cele ale
lui f.

Fie deci f : A C R? — R gi (a,b) € A. Consideriim S C A o sferi cu
centrul in (a,b) §i de raza r drept vecinatate pe care au loc conditiile din
criteriul lui Schwarz, respectiv cele din criteriul lui Young.

Fie (z,y) € S cu x # a §i y # b un punct arbitrar dar fixat si fie expresia
g(z,y) = f(z,y) — f(z,b) — fla,y) + f(a,b). Definim doud functii de o
variabila astfel:

¢:la,z] CR =R ot) = f(t,y) — f(L,D),Vt € [a, 7] si

Y [by] SR — R, 0(s) = f(z,s) — fla,s),Vs € [b,y].

Atunci g(z,y) = () — pla) = P(y) — ¥ (b).

Din ipotezele ambelor criterii rezulta ca exista Iz si g—f pe S si astfel ¢
T Y
si ¢ sint derivabile pe intervalele lor de definitie si
of of
"(t) = ==(t,y) — ==(t,b),Vt
p(t) = 5-(ty) — 5-(t,b),Vt € [a, 2],
V(o) = G (.5) = (@) ¥s € (b

Putem astfel sa aplicam teorema cresterilor finite (teorema lui Lagrange)
celor doua functii.
Deci exista ¢ € (a,x) si d € (b,y) a.l.

(1) 9(z,y) = ¢'(c)(x — a) = ¢'(d)(y — b)
iar
: of of
(2> (C> % (C7 y) - % (C7 b)7
/ of of
Q Vid) = 5w d) - aa),
1). Sa presupunem acum ca ne situam in conditiile criteriului lui Schwarz;
2f a2f

atunci exista pe S si sint continue in (a, b).

R Oz
In (2) st (3
b

punctele e € [b,

dy’ Oyox
) putem aplica din nou teorema lui Lagrange si obtinem
yl si f € [a,z] al.

(@) PO = g (@ly D)
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6 Wid) = 52 (. d)a ~ a)

Reprezentam pozitia posibila a acestor puncte in figura urmatoare:
Y

/o

(f,
( e
\ o

Din (1), (4) si (5) rezulta ca, V(z,y) € S,z # a,y # b, exista doua puncte,

(7
) (f(2,9),d(z,y)) € (a,2) x (b,y), al.

(© S ) e(.v) = 50 (F ). dla. ),

—~
o)
—~
8
<
~
o
—~
8
<
~—

Trecem la limita pentru (x,y) — (a,b) in (6) si, deoarece derivatele mixte
sint continue iar

hm(az,y)ﬂ(a,b) C({B, ?/) =a= hm(x,y)%(a,b) f(xa y)7

Mz ) (ap) (2, ¥) = b = lime )0 p) d(z, y), rezulta ca

0 f 0 f
8y8w<a’ b) = 8x8y(

a,b).

gf % sint definite pe S si sint diferentiabile

n (a,b). Atunci exista toate derlvatele de ordin doi ale lui f pe S si exista
doua functii o, 5 : S — R continue si nule in (a,b) a..

M) ) =Ghab + T -0+ 2@ b - b

2). Sa presupunem acum ca

+a(z,y) - [[(z,y) = (@, b)],¥(z,y) € 5,

® Lo =Sen+ 2lane-o+Slenu-n+
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+0(x,y) - (2, y) = (a,0)]], ¥(2,y) € 5.
Deoarece (c,y), (c,b) € S, din (2) si (7) obtinem

0 f
Oyox

(9) #'(0) = (a,0)(y = b) +ale,y) - [l(c;y) — (a,0)]] — alc,b) - [c — al,

si cum (z,d), (a,d) € S, din (3) si (8) rezulta

02 f

(10) v'() = 52

55 (a,0)(x —a)+ B(z,d) - [[(x,d) = (a,b)|| = B(a, d) - |d = 0.

Atunci, din (1), (9) si (10) rezulta ca

(1) 5 @by - b - +alew) e - @D - a-
02 f
~a(eb)fe—al(e—a) = 52 (0, D)(a—a) (y—b) (e, d) | (2.d) (. ) (D)~

~Bla,d) - |d — bl(y — b).

Impartim relatia (11) cu (x — a)(y — b) si obtinem:

o*f (e, y) = (a,b)] c—q|
12 b S 2 e,y 2 =
( ) aya$ (a7 ) + Q{(C, y) y _ b Oé(c, ) y _ b
0*f [(z, d) — (a,b)] |d = bl
b d ’ - — d)  ——.
aa(@ )+ Bz, d) - — Bla,d) - ——
Deoarece (z,y) este arbitrar in S il putem alege a.i. |z —a| = |y — b|;
SR (G EX RO ST A T, ST
y =] i b|51? —a
o)~ @0l gy e _lo—d ISR
|z —al -0 = ly=0 lzr—al 7 |z —q
Putem atunci trece la limita in relatia (12) pentru (z,y) — (a,b) cu
conditia ca |z — a| = |y — b|; deoarece « si [ sint continue gi nule in (a,b)
rezulta ca
0*f 0*f
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3.3.2 Definitie. Fie f : A C R* — R! o functie diferentiabild in toate
punctele interioare ale multimii A; atunci, Vh € RF, putem defini functia
g" A= R prin ¢"(z) = df (z)(h),Vz € A.

Dacd, Vh € R*, functia ¢" este diferentiabild in punctul a € fol, spunem
ca functia f este diferentiabila de doua ori in a.

Diferentiala a doua a functiei f in a este prin definitie aplicatia:

d?f(a) : R* = R d?f(a)(h) = dg"(a)(h),Vh € R

In cazul particular k = 2,1 =1, f + A C R? — R este diferentiabild
de doua ori in punctul interior (a,b) € A dacd, V(h,k) € R?, aplicatia
g™t A — R definita prin ¢ (z,y) = df (z,y)(h, k),¥(z,y) € A, este
diferentiabila in (a,b).

3.3.3 Propozitie. Fie f : A C R*> — R o aplicatie diferentiabild in toate
punctele multimii deschise A; [ este diferentiabila de doua ori in (a,b) € A

daca st numai daca 8_f st g sint functii diferentiabile in (a,b).

ox dy
In acest caz
o0 f
0xdy

(a,b) - hk+%(a b) - k2.

d*f(a,b)(h, k) = %(a, b)-h?+2

Demonstratie. Sa reamintim ca, V(z,y) € k) € R?,

af

(hk A_>R g(hk)(:)j y) df(x,y)(h,k?): ( y) h+a_y

(

Daci f este diferentiabild de doua ori in (a,b) atunci, ¥(h, k) € R?, g(»k)
este diferentiabila in (a,b).

0
Rezulta ca g0 = % si g0 = 8_f sint diferentiabile in (a, b).
Reciproc, daca of si of sint diferentiabile in (a, b) atunci or, h+ g
dx > Oy ox dy

este diferentiabild in (a,b), V(h, k) € R? (vezi teorema 3.2.22, punctele 1) si
2)). Rezulta ca g% este diferentiabils in (a,b) si deci f este diferentiabila
de doua ori in (a,b).

In acest caz

HgP) h.k)

ox

df(a,b)(h, k) = dg"™® (a,b)(h, k) = (a,b) - h + 09!
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(02];( ) h+a2éfy(a’b)"“> h+<a;(;;( b) - h+aiyf(a b) - k:) k.

Criteriul lui Young ne asigura ca derivatele partiale mixte ale lui f in punctul
(a,b) sint egale; deci:

02 f o2 f
8:1:'6( b) - hkz+m(a b) - k2.

3.3.4 Observatii. 1). Tinind cont de notatiile dz(h, k) = h,dy(h, k) = k
(vezi observatia 3.2.7, 3)) putem scrie functional relatia de mai sus:

0 f O*f 0*f 2
922 uay L+ gz ()

d*f(a,b)(h, k) = %(a, b)-h? 42

d*f(a,b) = - (dx)* + 2

unde toate derivatele de ordin doi ale lui f sint calculate in punctul (a,b).
2). Fie acum k oarecare si [ = 1; presupunem ca f : A C R* — R este
diferentiabila pe A si fie a € A. Presupunem ca, Vh = (hy,...,hx) € R*

af

functia ¢" : A = R, ¢"(x) = df(x)(h) = F
J

(x) - hj,Vx € A, este
j=1
. e s . L. . Of
diferentiabila in a sau, echivalent, ca, Vj = 1,...,k, functia %() este
J
k

h
diferentiabild in a. Atunci d®f(a)(h) = dg"(a)(h) = g gg (a) - h; de unde
X

k

_ of

(a) - hih;

Asa cum se constata diferentiala a doua este o forma patratica in h.
Daca trecem la scrierea functionala

- dx;d
Z Gxﬁx] e

3). In cazul general f = (fi,...f)) : A C R¥ — R Vh e R*, functia
df1(z)(h)

ho A — R este definitd prin ¢"(z) = df (z)(h) = : . Rezulta
dfi(x)(h)
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ca functia Vectorialé g" are componentele scalare (g7, ...,g") unde, Vj =

0
1,....1, gj Z 3;?1 - h;. Functia ¢" este diferentiabild in a, Yh € R¥,

0
daca si numai daca 6_f() este diferentiabila in a, Vi =1,....,k, 5 =1,..., 1.
x.

Atunci d*f(a)(h) :ldgh(a)(h) = Jyn(a) - h. Matricea jacobiana a functiei
g" este data de

dgt Ayt
Jgh(a) = : :
Ay dg'
B, (@) ... B, (a)
si deci
k 2 k 2
S PRSP,
— Ox10x; “— 00, hy
d*f(a)(h) = : : o N
Dt IS Sl AU B
i1 81’18371 ’ ’ i1 8$Ckaxl !
de unde .
> f
(@) - hih;
d*f(a)(h) = : ,Vh € R¥.
k
0 fi

4). Asa cum am remarcat mai sus la punctele 2) si 3), diferentiabilitatea
tuturor derivatelor partiale de ordinul intii ale unei functii intr-un punct
echivaleaza cu faptul ca functia este diferentiabila de doua ori in acel punct.
Atunci putem reformula criteriul lui Young:

Daca o functie este diferentiabila de doua ori intr-un punct atunci derivatele
maxte de ordin dot ale functiei in acel punct coincid.

5). Observam o asemanare a formulei care da diferentiala a doua cu
formula de ridicare la patrat si atunci introducem (pentru functii scalare de
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doua variabile) notatia:
B B 2)
Cf==— .-de+-=.d
f (@x T+, y) (f)

In formula de mai sus, numarul 2 de la exponent semnifica ridicarea la putere

pentru dx si dy si derivatele de ordin doi ale lui f pentru — si —

or > Oy
In cazul general se obtine o formula de diferentiere asemanatoare celei
din cazul functiilor de doua variabile

(n) n n
v = (Gt gy ) ()= 2 Ol

De exemplu, pentru n = 3 obtinem

Bf
0x0y?

(o)) + 5 5

df = 3f(dx)?’ +3 Of (dz)*(dy) + 3
0x20y
O formula similara, care mimeaza ridicarea la putere, functioneaza si in
cazul general f : A C R¥ — R:

] ] &

d"f = cdry + ...+ —-dx .

f ( pr gz, (f)
6). Criteriile lui Schwarz si Young acopera situatii diferite. Astfel daca
o functie indeplineste conditiile din criteriul lui Young este diferentiabila de
doua ori dar nu rezulta ca derivatele sale mixte sint continue. De asemenea
este posibil ca o functie sa aiba derivate mixte continue intr-un punct dar

functia sa nu fie diferentiabila de doua ori.

O situatie in care se aplica ambele criterii de egalitate a derivatelor partiale
mixte este prezentata mai jos.

3.3.5 Definitie. Fie D C R* o multime deschisd; o functie f : D — R!
este de clasi C* pe D (notatie: f € C*(D)) dacd existd toate derivatele
partiale de ordin doi ale tuturor functiilor de coordonate ale lui f si acestea
sint continue pe D.

Similar, spunem ca f este de clasa C™ pe D si notam f € C™(D) daca
functiile de coordonate ale lui f au toate derivatele partiale pind la ordinul n
inclusiv si acestea sint continue pe D.
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3.3.6 Observatie. Functiile de clasi C? pe D indeplinesc conditiile din
criteriul lui Schwarz dar si pe acelea ale criteriului lui Young. Intr-adevar,
putem aplica criteriul de diferentiabilitate (teorema 3.2.8) derivatelor partiale
de ordin intii; rezulta ca acestea sint diferentiabile pe D. Deci pentru aceste
functii toate derivatele mixte de ordin doi coincid pe D.

3.3.7 Teorema. O functic de clasi C? pe D este diferentiabild de doud ori
in toate punctele lui D.

Demonstratie. Asa cum am remarcat mai sus, o functie de clasa C? are
derivate partiale de ordin intii si acestea sint diferentiabile in toate punctele
lui D; de aici rezulta ca functia este diferentiabila de doua ori pe D.

In mod similar se obtine:

3.3.8 Teorema. O functie de clasa C™ pe D este diferentiabila de n ori in
toate punctele multimii D.

3.4 Formula lui Taylor

Vom incepe cu o forma simpla a formulei lui Taylor, forma care este pusa in
evidenta de teorema lui Lagrange.

3.4.1 Teoremi (teorema lui Lagrange). Fie A C R* o multime deschisd si
convexa si fie f: A — R o functie diferentiabila pe A; atunci, Va,b € A,
dc € [a,b] a.i.

f() = f(a) = df(c)(b — a)

Demonstratie. Deoarece f este diferentiabila pe A, din corolarul 3.2.4,
2), f admite derivata in orice punct a € A pe orice directie u € R* \ {0} si

df
2 (@) = df(a)(w).

Din teorema de medie (teorema 3.1.6), Va,b € A,3c € [a,b] a.l.

1) = fa) = (0

(A este multime convexa i deci conditia [a,b] C A este indeplinita).
Rezulta ca f(b) — f(a) = df(c)(b — a).
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3.4.2 Observatii. 1). Daca a = (aq,...,ax),b = (b1, ...,bx), relatia din
teorema se poate scrie dezvoltat (vezi si observatia 3.2.7, 1))

£(b) — fla) = ;’—jlwl )t g—gfk@(bk ).

Pentru cazul k£ = 2 formula revine la

FO) = F@) = @b = a1) + 5 €10~ ).

2). Teorema lui Lagrange se poate reformula:
Fiea € A;Vx € A, Jc, € [a, 2] a.i.
f(x) = fla) + df (cz)(z — a).

In aceastd variantd obtinem o formula de tip Taylor de ordin zero cu restul
Ro(f,z) = df (cz)(z — a).

Prezentam acum formula lui Taylor in forma sa generala.
3.4.3 Teorema (formula lui Taylor). Fie A C R* o multime deschisd si
convexd, a € A gi f : A — R o functie diferentiabila de (n+ 1) ori pe A (in
particular f € C""Y(A)); Vo € A,3c € [a, 1] a.i.

@) = @)+ 5 (@) =)+ (@) =) + ™ F () (=)

Demonstratie. Vr € A, [a,z] C A; in plus, deoarece a si = sint puncte
interioare lui A, 3r > 0 a.l. S(a,r) € Asi S(z,r) C A. Atunci
T T

a+t(xr—a)e Sar) CAs — iar

[ [ = af

a—l—t(x—a)éS(x,r)QA@l—L<t<1+
[ —a [ — a

C R. Definim ¢ : I — A,

; fie intervalul

r 1+ T

deschis I =
|z — al|

lz = al|’
et)=a+t(xr—a)= (a1 +t(xy — a1),...,a + (xx — ag)),Vt € I;
(1) este un segment deschis din A care contine segmentul inchis ([0, 1]) =
[a, z]. Functia ¢ este derivabila pe I (vezi observatia 3.2.12, 3)) si
e1(t) (a1 +t(z1 — ar)) T —a
Yty=| + | = : = : —z—a,Vtel

@i (t) (ar + t(xr —ag))’ Tp — Q)
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Rezulti ci ¢ este derivabili de oricite ori pe I si o™ (t) =0 € R*,¥n > 2.

Sa consideram acum functia h : I — R, h = f o . Asa cum am constat
intr-unul dintre cazurile particulare de derivare a functiilor compuse (vezi
3.2.25, 2)) h este derivabila si, Vt € I,

B0 = 2 (o0) 40+ + 2 (00) - ile) =

Deoarece f este diferentiabila de doua ori, Vi = 1, ..., k, 8_f este diferentiabila
I.

si putem aplica iar formula de derivare a functiilor Compusle; rezulta ca h este
derivabila de doua ori si, Vt € 1,
Eog2 f

e (1) - (2 — a;)(x; — a;) = d*fe(t))(z — a).

h”(t) —

i’j:

Rezulta din aproape in aproape ca h este derivabila de (n 4+ 1) ori pe I si
ROt) = d' f(pt))(x —a),Vt € [LVi=1,...,n+ 1.

Putem atunci sa aplicam functiei h formula lui Maclaurin pe intervalul I;
cum 0,1 € I =1,36¢€]0,1] ai.

' (0) RM(0) A (9)
T T T

h(1) = h(0) +

Fie atunci ¢ = ¢(6) € [a, z]. Inlocuind in relatia precedents

h(1) = f(2), h(0) = f(a), AD(0) = d'f(a)(z — a),¥i = 1,...,n si
hD(9) = dmH (o) (x — a),

obtinem formula din enuntul teoremei. .

3.4.4 Corolar. Fie A deschisi si convezd in R¥.a € A si f: A — R o
functie diferentiabila de doua ori pe A; atunci, Vo € A, 3c € [a, x| a.i.

2

f@) = @)+ 3 (@i~ a %Z o (€)= )~ )
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Demonstratie. Intr-adevar in acest caz formula lui Taylor se scrie:

1 1,
f(@) = fla) + df (a)(z — a) + 5d" f(e)(z — a)

Utilizam acum formulele care dau diferentiala de ordin 1 (observatia 3.2.7,
1)) si diferentiala de ordin 2 (observatia 3.3.24, 3)) si obtinem relatia din
enuntul corolarului. .
3.4.5 Observatie. In cazul k = 2 reformuldm corolarul precedent:

Fie A C R? deschisa si convexa, (a,b) € Asi f : A — R o functie
diferentiabila de doua ori pe A; atunci, V(x,y) € A,3(c¢,d) pe segmentul
ce uneste (a,b) cu (z,y) a.l.

o) = Flab) + 5 (@b =)+ (@bl = b+
+% %(c, d)(z — a)? + 286;(;;(0, d)(z —a)(y —b) + g—y{(c, d)(y —b)?| .



Capitolul 3

Diferentiabilitatea functiilor de
mai multe variabile

3.5 Puncte de extrem

Problema existentei punctelor de extrem pentru o functie reala se rezolva
cu mijloace topologice; de exemplu teorema lui Weierstrass (corolarul 2.3.9)
este un instrument util in rezolvarea acestei probleme.

Pentru a gasi efectiv punctele de extrem ale unei functii trebuie insa sa
utilizam, ca gi in cazul functiilor de o variabila, aparatul diferential. Asa
cum vom remarca, diferentiala intli ne va oferi conditii necesare de extrem
iar diferentiala a doua va da conditii suficiente.

3.5.1 Definitie. Fie functia f: A C R¥ — R.

Un punct a € A este un punct de minim local pentru f daca ezistd o
vecindtate a sa, V € V(a), a.i., Ve € VN A, f(z) > f(a)

Un punct a € A este un punct de maxim local pentru f daca exista o
vecinatate a sa, V € V(a), a.i., Ve € VN A, f(z) < f(a)

a € A este punct de extrem local daca este punct de minim local sau
punct de mazxim local.

In cele ce urmeaza vom detalia conditiile necesare pentru ca un punct sa
fie punct de extrem local pentru functii de doua variabile, marcind modificarile
necesare in cazul k > 2.

94
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3.5.2 Teorema (teorema lui Fermat).

Fie f : ACR?* = R si (a,b) € A un punct de extrem local pentru f.

1). Daca f are derivate partiale in (a,b) atunci acestea sint nule.

2). Daca f este diferentiabila in (a,b) atunci df(a,b) = 0 ceea ce revine la

df (a,b)(h, k) = 0,Y(h, k) € R®.

Demonstratie. Fie (a,b) un punct de minim local pentru f.

Deoarece (a, b) este punct interior pentru A i punct de minim local pentru
f putem determina un numar r > 0 a.l.

1. S((a,b),r) C Asi

2. f(z,y) = f(a,b),¥(z,y) € S((a,b), 7).

1). Definim functia g :Ja—r, a+r[— R prin g(t) = f(t,0),Vt €]la—r, a+r];
observam ca vVt €la —r,a + 1|, (¢,b) € S((a,b),r) C A si deci functia g este
bine definita.

Functia g verifica ipotezele teoremei lui Fermat pentru functii reale de o
variabila reala. intr—adevér, a este punct interior pentru multimea de definitie
a functiei g. Din conditia 2. g(t) > g(a),Vt €]a — r,a + r[; deci a este punct
de minim local pentru g. In plus, deoarece f are derivate partiale in (a,b), g
este derivabila in a si ¢'(a) = =—(a, b).

ox

Aplicam atunci teorema lui Fermat pentru ¢ si obtinem ¢'(a) = 0.

Rezulta deci ca g(a, b) = 0.

Ox
In mod asemanator se defineste h :]b — r, b+ r[— R, h(t) = f(a,t),Vt €
Jb—1r,b+r[, si se arata ca h'(b) = g—g(a, b) = 0.
2). Daca f este diferentiabila in (a,b) atunci f are derivate partiale in
(a,b) si df(a,b) = g—f(a, b)dx + g—f(a, b)dy. Folosind punctul 1). rezulta ca
Z Y
0 3}
a—i(a,b) = 8—5(@,1)) = 0 si deci df (a,b) = 0. .

3.5.3 Observatie. Rezultatul teoremei precedente se extinde evident in
cazul k > 2. Astfel, daci f : A C R¥ — R are un punct de extrem local in
a € Asi f este diferentiabila in a atunci df (a) = 0.

3.5.4 Definitie. Fie f: ACRF SR siac A a.i df (a) = 0; atunci a se
numeste punct critic al functiei.
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3.5.5 Observatii. 1). Teorema lui Fermat spune ca punctele de extrem
local, interioare multimii de definitie a unei functii, se gasesc printre punctele
critice ale functiei.
Fie f: A CR* — Rgia € A; a este punct critic pentru f daci df (a)(h) =
k

0
Z 83{- (a)h; = 0,Yh = (hq, ..., h;) € R*. Daca inlocuim, Vi = 1,....k, pe h

=1

cu e;, obtinem (a) = 0. Rezulta ca a este punct critic pentru f daca si

numai daca a—j(a) =0,Vi=1,.. k.

1
Concluzia este ca punctele critice ale lui f se obtin rezolvind sistemul de
k ecuatii cu k necunoscute

0
8_$fl<x17 7'1;/4:) =0
8_;;(xla 7$l€) =0

2). In cazul k = 2 ecuatia planului tangent intr-un punct (a,b) In care
functia f este diferentiabila este

_9f of
z— f(a,b) = B (a,b)(z —a) + 3y (a,b)(y —b).
y i .0 of Do
Daca punctul (a,b) este punct critic atunci 8—(a, b) = a—(a, b) = 0 si deci
o )

ecuatia planului tangent revine la z = f(a,b) ceea ce reprezinta un plan
paralel cu planul z0y.

Rezulta ca intr-un punct de extrem local planul tangent la graficul functiei
este paralel cu planul z0y. Aceasta interpretare geometrica este in concor-
danta cu aceea de la functii reale de o variabila; amintim ca, in cazul unei
functii de o variabila, intr-un punct de extrem local tangenta la graficul
functiei era paralela cu axa Ox.

3). Ca si la functii de o variabila, conditia ca un punct sa fie punct critic
este doar o conditie necesara nu si suficienta pentru ca el sa fie punct de
extrem.

Daca cogsiderém,ade exemplu, functia f : R* — R, f(z,y) = 2y, V(z,y) €

2 . Of f
R atunci i Y, By

= x si astfel singurul punct critic al functiei f este
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punctul (0,0). Observam insa ca, in orice vecinatate a originii, se gasesc

puncte (z,y) cu f(x,y) > 0= f(0,0) sipuncte (z,y) cu f(x,y) < 0= f(0,0).
Rezulta ca punctul critic (0,0) nu este punct de extrem local.

3.5.6 Definitie. Un punct critic care nu este punct de extrem pentru o
functie f se numeste punct sa pentru f.

Graficul unei functii in vecinatatea unui punct sa arata, in cazul k = 2,
ca in figura de mai jos.

Se observa c, in orice vecinatate a punctului (a, b, f(a, b)), graficul functiei
are puncte situate deasupra si sub planul tangent (7).

Pentru a selecta punctele de extrem din multimea punctelor critice avem
nevoie de conditii suplimentare, conditii exprimabile prin intermediul dife-
rentialei a doua. Pentru aceasta vom studia semnul diferentialei de ordin
doi. Remarcam ca rezultatele urmatoare sint valabile in cazul mai general al
teoriei formelor patratice.

3.5.7 Definitie. Fie [ : A CR* = R o functie de doud ori diferentiabild
in a € A; diferentiala a doua, d*f(a), este pozitiv definita dacd

d*f(a)(h) > 0,Vh € RF\ {0}.
d’f(a) este negativ definitd dacd
d?f(a)(h) < 0,Yh € RF\ {0}
deci dacd (—d?f(a)) este pozitiv definitd.

d’f(a) este nedefinita dacd 3 h,h' € R*\ {0} a.i. d®f(a)(h) > O si
d?f(a)(R) < 0.
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3.5.8 Observatie. Fie f: A C R? — R o functie diferentiabils de doui ori
in (a,b) € A; atunci, dupa propozitia 3.3.3, diferentiala a doua in punctul
(a,b) este definita prin:

o*f o*f o*f

2 _ 2 J 2 Z 4 2 2

& (0, b)(h k) = 55 (0,0 + 25 5 (a D)k -+ (DR, (h, B) € B2
T oy oy

Fie M = @(CL, b),N = axay<(l7b),P = a—yQ(CL7 b)

Tinind cont c& d*f(a,b)(h,k) = Mh* + 2Nhk + Pk* este un trinom de
gradul doi in A si k se verifica ugor ca:

N?2— M -P<0,

d2f(a, b)(h7 k) > 07V(h, k) 7é (07 O) A { M > O_

Rezulta deci ca

d*f(a,b) este pozitiv definitda <

N2—M-P<0,
M > 0.

Similar se arata ca

d?f(a,b) este negativ definita <

N?—-M-P<O,
M < 0.

sica
d*f(a,b) este nedefinita < N? — M- P > 0.

In cazul general putem demonstra urmatoarea propozitie:

3.5.9 Propozitie. d*f(a) este pozitiv definitd dacd si numai dacd existd
un numar m > 0 a.i.

@ f(a)(h) > m - ||h||* Vh € R

Demonstratie. Suficienta conditiei este evidenta; intr-adevar, din
relatia d?f(a)(h) > m-||h||?,Vh € RF rezulta ca d®f(a)(h) > 0,Vh € R¥\ {0}.
Sa presupunem acum ci d? f(a) este pozitiv definita.
Fie C = {h € R* : ||| = 1} “cercul” cu centrul in origine si raza 1
din R*; C este multime marginitd si inchiss, deci este o multime compacta
(teorema 1.3.33).
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d*f(a) : C — R,d*f(a)(h) =

—~ D0 (a)hih;,Yh = (hq,....h) € C,

este o functie continua pe C. Rezulti atunci din teorema lui Weierstrass
(corolarul 2.3.9) ci exista h° € C al. d*f(a)(h) > d*f(a)(h"). Deoarece
h# 0 (|n°] = 1), m = d* f(a)(R°) > 0.

Fie acum h € R*\ {0}; atunci R h € C de unde rezulta ca

2 f(a) (H_flLH - h) > m.

Dar d?f(a) (ﬁ : h) = th||2 -d*f(a)(h) de unde obtinem

d*f(a)(h) = m - ||h]|*,Vh € R"\ {0}.

Deoarece inegalitatea este evidenta pentru h = 0, rezulta ca ea este verificata
pentru orice h € R*. .

Sintem acum in masura sa prezentam conditii suficiente de extrem pentru
functii reale de mai multe variabile.

3.5.10 Teorema. Fie A C R* o multime deschisd si convexd, fie f : A — R
o functie de clasi C* pe A si fie a € A un punct critic pentru f (df (a) = 0).

1). Dacd d*>f(a) este pozitiv definitd atunci a este un punct de minim
local pentru f.

2). Dacd d?f(a) este negativ definitd atunci a este un punct de maxim
local pentru f.

3). Dacd d*f(a) este nedefinitd atunci a nu este un punct de extrem local
pentru f.

Demonstratie. Aplicam functiei f formula lui Taylor de ordin 1 (coro-
larul 3.4.4); rezulta ca, Vo € A, 3 ¢, € [a, 2] al.

£(2) = f(a) = df (@) & = a) + 5 - f(e)x — 0)

Deoarece a este punct critic pentru f, df(a) = 0 si astfel relatia de mai
sus se scrie:

L @I @ —a) — Pf(a)( —a)].

E
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Fie x € A\ {a}; vom exprima in alt fel paranteza patrata E din relatia (1)
de mai sus.

k

82]‘ 82]0
FE Z;_:l 81‘181?] (Cx)(l'z (lz)(ff] CL]) 2 axzax] (CL) (% . ai)<xj . (lj) _
S Pf
- [~ )] =t =) -
k
_ o2 f 92 f Ti—a @ —a ;
= 5o )~ @) ol T el

Definim acum functia o : A — R prin

T Fa

i,j=1

k 2 2 s _q.
o f (c) — o°f (@) - Ti—ai T —
a(x) = 0z,;0x, O0x;0x; |z —all |z —a

0 ,x=a

Atunci relatia (1) se scrie

@) J@) - @)= 5 P a) + 5 afx) -zl

1). S& presupunem acum ca d*f(a) este pozitiv definitd; din propozitia

3.5.9, existd m > 0 a.i. d>f(a)(h) > m||h||?,Vh € R*. Deoarece f € C?(A),
an 82f T:— Q; Ti— Qs

Ao \Cz) = Vi,g=1,.. ki L L <1
Ox;0x; (¢z) Ox;0x; (@), Vi, j = L,....k i cum lx—al |lz—al ~
rezulta ca lim,_, a(z) = a(a) = 0.

Atunci exista o sfera deschisa S(a,r) a.i., Vo € S(a,r), —% <ax) <
Din (2) obtinem

hmxg,[)

SE

m m m
f(@) = fa) 2 Flle—all* = Flle = all* = Fllz —al* 2 0,¥z € S(a, ),

ceea ce arata ca a este un punct de minim local pentru f.

2). Cum d?f(a) este negativ definitd, (—d*f(a)) este pozitiv definita si
deci existd m > 0 ai. d2f(a)(h) < (—m)||h||?,Vh € R*. In continuare
demonstratia se face la fel ca la punctul precedent.
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3). d?f(a) fiind nedefinita, exista h,h’ € R* ai  d?f(a)(h) > 0 si
d*f(a)(h') < 0. Fie 6 > 0 ai. Vit € (—0,0),z =a+th,a’ =a+th € A
(a este punct interior pentru A).

Inlocuind in relatia (2) si tinind cont ci d2f(a)(th) = t2d2f(a)(h),Vt €
R,Vh € R*, obtinem, V¢ € (=4, 6):

(_
Flatth) = fla) = 5 - @ fa)(h) - £ + 5 -ala+ th) -2 ],

fla+th') — f(a) = % ~d?f(a)(W) -2 + % cala+th') -t - |||

Deoarece lim,_,, a(z) = 0, putem gasi r a.dl. 0 <r < gi Vt € (—r,7),

1 1
— 5 d’f(a)(h) < ala + th) - ||h|? iar ala + th') - |W]]* < ~3° d*f(a)(R').
Rezulta atunci ca Vt € (—r,r),

fla+th) — fla) > i 2 f(a)(h) - £ > 0

iar
Fla+th') = f(a) < }1 P f@)(H) - <0,

Deci in orice vecinatate a punctului a gasim si valori ale lui f mai mari ca
f(a) si valori mai mici ca f(a). Rezulta ca a nu este punct de extrem local
pentru f. .

In cazul particular £ = 2 conditiile din teorema precedenta se pot pune
sub o forma usor de verificat in cazuri concrete.

3.5.11 Corolar. Fie A C R? o multime deschisd si convexd, f: A — R o
functie de clasd C? pe A si fie (a,b) € A un punct critic pentru f.
Notam M = ﬁ(a b), N = l (a,b), P = ﬁ(a b)
ox2 oxdy oy
1). Daci N>~ MP < 0 si M > 0 atunci (a,b) este punct de minim local.
2). Dacd N*—MP < 0 si M < 0 atunci (a,b) este punct de mazim local.

3). Daci N> — MP > 0 atunci (a,b) nu este punct de extrem local.

Demonstratie. Concluzia corolarului rezulta din teorema precedenta si
din observatia 3.5.8.
Vom da in cazul general, fara demonstratie, conditii suficiente de extrem.
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3.5.12 Definitie. Fie f: AC R* — R o functie diferentiabild de doud ori
in a € A; atunci matricea

o*f 0% f o*f
8_33%(&) 0x107 @ 0x10xy, (a)
o*f 0% f o*f
Hf(a) = 8x28x1 (Cl) 8_x§(a) o 8$ank (a)
0*f o0 f 0 f
0xL0x, (a) 0x,0xs AR 8_30,2(@

se numegte hessiana lui f in a (de la numele matematicianului german
Ludwig Otto Hess (1811-1874)).

3.5.13 Corolar (conditiile lui Sylvester'). Fie A C R* o multime deschisd
si convexd, f : A — R o functie de clasd C? pe A, a € A un punct critic

: Y
. 0 2
pentru f sidy = 8—;;(61),0[2 = gg} ) 85@56(2@) ey dyy = det(Hyp(a)),
8$28I1 8x§

mainorii principali ai matricii hessiene.

1). Daca dy,ds, ..., dy sint toti pozitivi atunci a este un punct de minim
local pentru f.

2). Dacd —dy,dsy, ..., (—1)*d;, sint toti pozitivi atunci a este un punct de
maxim local pentru f.

Sint situatii in care, aga cum vom remarca in exemplul urmator, corolarul
precedent nu este aplicabil.
3.5.14 Exemplu. Fie functia f : R* — R, f(z,y,2) = 2° + 3> + 2° —
5xyz,¥(z,y,2) € R®. Pentru a gasi punctele critice ale functiei f rezolvam
sistemul obtinut din anularea derivatelor partiale ale functiei.

(Of 4 _
%—Sx oyz =0
%:5y4—5x220 .
of "

\ &:52 —oxy =0

! James Joseph Sylvester (1814-1897), matematician englez.
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Multimea solutiilor sistemului este S = {(1,1,1), (—1,—1,—1),(0,0,0)}.
Derivatele partiale de ordin doi sint:

(
o0 f 0 f
— = 202" =-5
82x2 T 8x28y :
o°f o°f
— =20y° = 5y .
8;/2 v 8%8z 4
o°f o f
—— =202 = -5z
[ 022 0y0z
Deci matricea hessiana asociata lui f in punctul critic (1,1,1) € A este
20 =5 =5
Hy = | =5 20 —5] . Minorii principali ai acestei matrici sint pozitivi
-5 =5 20

deci (1,1, 1) este un punct de minim local pentru f.
Matricea hessiana asociata lui f in punctul critic (—1,—1,—1) € A este

20 5 5
Hy=| 5 =20 5 |.Aicid; <0,dp > 0iards <0. Deci (—1,—1,—1)
5 5 —20

este un punct de maxim local pentru f.

Matricea hessiana in (0,0, 0) este matricea nula; deci corolarul precedent
nu poate preciza natura acestui punct critic.

£(0,0,0) = 0 iar f(x,z,7) = 32° — 52® = 23(32% — 5). Se observa ca,
pe orice vecinatate V' a originii si V(x,z,x) € V, f(z,z,z) ia valori pozitive
daca x < 0 gi valori negative daca x > 0. Rezulta ca acest punct critic este
un punct sa.



Capitolul 3

Diferentiabilitatea functiilor de
mai multe variabile

3.6 Teorema de inversare locala

Vom prezenta intai cateva proprietati legate de inversarea operatorilor liniari.

3.6.1 Propozitie. Fie T : R* — R’ un operator liniar si fie Ay matricea
asociatd (T(z) = Ap -z, Vo € RY).

a). Daca T este injectiv atunci k < [.

b). T este bijectiv daca si numai daca k =1 si Ar este nesingulara.

Demonstratie. a). Am aratat ca un operator liniar 7" este injectiv daca

si numai daca T'(z) = Opt = = = Ogs. Ecuatia vectoriala T'(z) = Op: este
a1 - Alk

echivalenta cu Ay - v = O sau, daca Ap = | --- --- .-+ |, cu sistemul
ap - Qg

s

In general acest sistem are co*~" solutii, unde r = rangAr; aceasti notatie

vrea sa spuna ca solutia generala a sistemului depinde de k — r parametri
care variaza independent in R.

Deoarece sistemul (S) are solutia unica x = Ogr rezulta k = r < min{k, [}
de unde k£ <.

104
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b). Necesitatea. Fie T un operator liniar bijectiv; atunci T este injectiv
si 771 : R' — R” este de asemenea operator liniar si injectiv. Rezultd din a)
k<lsil<k, decik=1I.

Matricea Ar este deci in acest caz patratica si pentru ca sistemul (S) sa
aiba solutie unica trebuie ca detAr # 0 si deci Ar este nesingulara.

Suficienta. Fie k = [ si A7 matrice nesingulara. Atunci sistemul (S) are
numai solutia banala ceea ce ne asigura ca T' este injectiv.

Oricare ar fi y = (y1,--- ,yx) € R sistemul

(S/) ...............

are, conform teoremei lui Cramer, solutie unici. Deci, oricare ar fi y € R”
existd = € R* aga fel incat T (x) = y ceea ce arata ca T este surjectiv.

Deci T este un operator liniar si bijectiv. .

3.6.2 Observatie. Fie A C R*,a € A sif:A-RL f=(f,,fi), 0
functie diferentiabild in a. Diferentiala functiei f in a, df(a) : R* — R', este
un operator liniar a carei matrice asociata este matricea jacobiana a lui f in

P P
g(a) - §t(a)
a: Je(a) = . . Propozitia precedenta ne asigura ca
) f)
5%%<a) e 5%%(“)
df (a) este bijectiv daca si numai daca k = [ i J¢(a) este nesingulara; aceasta

D(fi,--+, fx)

a) = detJ¢(a), este diferit
D(:vl,"-,xk)() r(a)

inseamna ca jacobianul lui f in a,

de zero.

3.6.3 Definitie. Fie U si V doud multimi deschise din R¥; o aplicatie
f U — V se numeste difeomorfism sau izomorfism diferential intre
multimile U si V daca f este bijectiva, f € CY(U) si f~1 € CH(V).

3.6.4 Observatie. Criteriul de diferentiabilitate ne asigura ca orice difeo-
morfism intre doua multimi deschise U si V' este o aplicatie diferentiabila in
toate punctele multimii U; inversa acestei aplicatii este de asemenea difeo-
morfism intre V gi U si deci este diferentiabila pe V.

Teorema urmatoare caracterizeaza difeomorfismele utilizand proprietatea
de bijectivitate a diferentialei.
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3.6.5 Teoremi. Fie U siV doi deschisi din R si fie f : U — V o aplicatie
bijectiva de clasa C* pe U (f € CH(U)).

Functia f este un difeomorfism intre U si V' daca gi numai daca

1. £~V — U este continud pe V si

2. df(a) : R* — R* este operator liniar si bijectiv, oricare ar fi a € U.

Demonstratie. Necesitatea. Daca f este difeomorfism intre U si V
atunci, din observatia precedenta, f~! : V — U este diferentiabild pe V si
deci este continua pe V.

fltof=1idy : U — Uidy(z) = z,Vor € U (aplicatia identica pe U);
idy este diferentiabils pe U si, oricare ar fi @ € U,d(idy)(a) : R¥ — R*
este aplicatia identicad pe R* (idgx : R¥ — R¥ idge(h) = h,Vh € R¥). Ma-
tricea asociata acestui operator liniar (matricea jacobiana a sa) este matricea

1---0
unitate I, = -
0---1

Deoarece f si f~! sunt diferentiabile (f este difeomorfism) putem aplica

formula de diferentiere a functiilor compuse:

idge = d(idy)(a) = d(f)(f(a)) o df (a).

Matricile jacobiene asociate acestor operatori se vor gasi atunci in relatia:

[k = Jf—l (f(a)) : Jf((l),

de unde

1 = detly = detJ-1(f(a)) - detJs(a).

De aici rezulta ca detJy(a) # 0 si deci ca Jy(a) este nesingulara. Observatia
3.6.2 ne asigura atunci ca df (a) : R” — R* este operator liniar i bijectiv.

Suficienta. Fie f : U — V o bijectie de clasa C' pe U astfel incat f*
este continui pe V si, oricare ar fi a € U, df(a) : R¥ — R" este operator
liniar si bijectiv. Pentru a demonstra ca f este difeomorfism intre U si V
este suficient s& aratam ca f~' € CH(V).

Vom demonstra intai ca f~! este diferentiabila pe V.

Fie b € V un punct arbitrar i fie a = f~1(b) € U; deoarece f € C*(U), f
este diferentiabila pe U si deci f este diferentiabila in a. Rezulta ca exista
o : U — R" continud si nuld in a astfel incat

(1) f(x) = fla) +df(a)(x — a) + [[x — al - a(z), V2 € U.
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Vom nota df (a) = T din ipotezd T este un operator liniar si bijectiv pe R¥.
Oricare ar fi y € V exista x € U astfel incat f(z) = y si atunci, din (1),
obtinem:

(2) y=b=T(x—a)+|lz —al|- a(z).

Aplicatia 7! : R¥ — R” este de asemenea operator liniar si, aplicand 7
in relatia (2), obtinem:

(3) T (y) - T7'(0) =z —a+|lz—all - T (a(z)),
(4) r—a=T"(y) =T () — [l —al| - T"(a(x)).

Deoarece T~! este aplicatie liniara ea este lipschitziana si deci existd o
constantd L > 0 astfel incat ||[T'(y) — T71(b)|| < L - ||y — b||. Aplicand
norma in relatia (4) si folosind inegalitatea precedenta obtinem:

|z —all < L+ [ly = bl| + ||z — al| - [|T77 (e(2))]]

de unde
— L
5 o —all _

ly =0l = 1= [T~ (a(x))I|

Observam ci x = f~!(y) si, deoarece f~! este continua, y — b = z =
fy) — f71(b) = a; atunci

(6) lim 1T~ a(@)]| = 1T~ (a(a)|] = 0
si deci exista 0 > 0 astfel incat

I (o~ )] < 5, ¥y € S(b,0).
Din (5) rezulta

||z — al
[y — bl

Relatia (4) se poate rescrie

(8) ) =)+ Ty —b) = llo —all - T (a(x)).

(7) < 2L,Vy € S(b,5).
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Fie functia §: V — R* definitd prin

1 ~1 -1 -1
5(9)2 m[f (y)—f (b)—T (y—b)} ,y%b'
0 ,y=
Atunci, din (7),
_ _llr=dl
Din (6) si (7) rezulta ca lim, ., B(y) = 0 = 3(b) iar din definitia lui
(10) FH) =0+ Ty =)+ lly = bl - Bly), ¥y €V,

ceea ce aratd ca f! este diferentiabild in in b, oricare ar fi b € V. Deci f}
este diferentiabila pe V.
Deoarece f o f~! = idy, aplicand formula de diferentiere a compunerii,

(11) (W) - Ty ly) = i, Yy € V.

Deoarece df (f~'(y)) este bijectiva, J;(f~'(y)) este nesingulara si deci in-
versabila. Din relatia (11) deducem:

(12) Jry) = [Jr (F' )] vy e v

Elementele matricii J;(f~*(y)) sunt de forma (% o f‘l) (y); f~* fiind con-
-

tinua, acestea vor fi functii continue de variabila y, oricare ar fié,j = 1,--- | k
(am notat f = (fi,---, fr) gi am tinut cont ca f € CY(U), deci ca % sunt
continue pe U). Tinand cont de modul in care se construiegte inversa unei
matrici rezulta din (12) ca elementele matricii J¢-1(y) sunt functii continue
de y pe V deci cd f~! € CY(V).

Astfel rezulta ca f este un difeomorfism intre deschisii U i V. .

3.6.6 Observatie. Relatia (12) din demonstratia teoremei precedente ne
1

aratd ca, oricare ar fiy € V, df ! (y) = [df(f_l(y))r )

In general aplicatiile f : U — V pe care le intalnim in practica nu sunt
aplicatii bijective astfel incat nu este in general posibil sa definim inversa
lui f pe multimea V. Ne punem problema daca aceasta functie nu poate fi
inversata macar local, pe vecinatatea unor puncte din U. Teorema urmatoare
da conditii suficiente in care o astfel de inversare locala este posibila.



3.6 TEOREMA DE INVERSARE LOCALA 109

3.6.7 Teoremi (teorema de inversare locald). Fie D un deschis din RF si
fie f: D =R feCYD).

Daci a € D este un punct in care df (a) : R¥ — R¥ este bijectivi atunci
existd o multime deschisd U in R*, a € U C D, asa fel incat V = f(U) este
deschisa si f este un difeomorfism intre U si V.

Demonstratia teoremei precedente este destul de laborioasa si nu o vom
prezenta.

3.6.8 Observatii. (i) Sa remarcam ca, in ipotezele teoremei, f este in-
versabild local pe U si f~! este de clasd C! pe multimea deschisa V', vecina-
tate a punctului f(a). Oricare ar fi y € V, exista un punct unic x € U asa
fel incat f(x) = y; f este diferentiabila pe U si atunci, din teorema 3.6.5,
df (x) este o bijectie.

(ii) S& presupunem k = 1; in acest caz f : D C R — R este de clasd C*
pe D daca f este derivabila si are derivata continua pe D. Fie a € D astfel
incat df(a) : R — R sa fie bijectiva. Deoarece df (a)(h) = f'(a) - h,Vh € R,
df (a) este bijectiva daca gi numai daca f'(a) # 0. Deci in acest caz teorema
precedentd se formuleaza astfel: Dacd f este de clasd C' pe D atunci pentru
orice punct a € D pentru care f'(a) # 0 exista o vecindtate deschisa U asa
fel incat restrictia lui f la U este inversabila si are inversa derivabila. In

plus (/Y(8) =
3.6.9 Exemplu. Sa rezolvam sistemul

2 2 _
i+ T3 =Y
2 2 _
Ty — Ty = Y2

unde ¥, yo sunt numere arbitrare in R dar fixate.

Sistemul de mai sus poate fi transformat intr-o ecuatie vectoriala. Definim
f o R? — R? prin f(21,72) = (22 + 23,22 — 22) si atunci sistemul de mai
sus este echivalent cu ecuatia vectoriala f(x) = y, unde = = (z1,x) iar

y = (Y1, 2)-
Observam ca f € C1(R?) si ca

. 2:5'1 21‘2 i 2
Jp(x) = ( o0, 21 ) Vo = (21, 22) € R,
Rezulta ca df (a) este bijectiva daca si numai daca J¢(a) este nesingulara
ceea ce revine la —8ajas # 0 (a = (a1, az)). Deci df (a) este bijectiva daca si
numai daca a nu se gaseste pe axele de coordonate.
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Sa luam un punct a din cadranul I (a; > 0,as > 0); atunci putem
considera U = {(z1,22) : ©1 > 0,22 > 0} (intreg cadranul I). Din sistem

rezultd ca L32 = 22 > 0 gi “52 = 23 > 0; de aici f(U) = V unde
2,
V={(y1,92) €ER": —y1 <ya <}
2y, , ., ., Y o
R S
4 -’ 4 Va2 P |
e L7 L e S e 0 .
,,,,,,, o
,,,,,,,,,,,,,, A 0 1
,,,,,, f P T T T
,’ Il " 7 ,’ ,’ ,|I 1 1 : 1
,,,,,,,,,,,,,,, JE—— O VAR
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II/[ ’ll’ e I — \I\ : : : X : yl
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11111111111 AN ! 1
/////// N 1 I
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Restrictia functiei f la U este inversabila si f~1 : V — U este definita

prin
-1 - Y1+ Yo Y1 — Y2

3.7 Functii definite implicit

Fie ACR?* F:A— Rsi (z0,y0) € Aal F(z0,v0) = 0. Ne punem proble-
ma gasirii de conditii in care, local (pe o vecinatate a punctului (zg, o)), sa
putem rezolva ecuatia F'(z,y) = 0 obtinindu-1 pe y functie de z.

Mai exact, ne intereseaza in ce conditii putem gasi doua intervale deschise
I,JCR, xgel,yoe J, I xJC Asiofunctie p: I — J ald.

{(z,y) e I x J: F(z,y) =0} = {(x,p(x)) : x € I}.

Observam ca membrul doi din relatia de mai sus este graficul functiei ;
astfel problema se poate formula astfel: in ce conditii multimea
{(z,y) € I x J: F(z,y) = 0} reprezinta graficul unei functii ?

In cazul in care existd o astfel de functie ¢ ea se numeste functie definita
implicit sau functie implicita.

Ne intereseaza deci sa vedem in ce conditii ecuatia F(z,y) = 0 definegte
local o functie implicita; in cazul in care aceasta functie exista, este ea deriv-
abila ?
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Exemplul urmator aratd ca nu putem explicita ecuatia F(x,y) = 0 in
vecinatatea oricarui punct.

3.7.1 Exemplu. Fie F : R* - R, F(x,y) = 2* + 3> — 1,V(z,y) € R%.
1). Fie (zo,y0) = (0,1) atunci exista [ = (—1,1),J =(0,2),0e€ I,1 € J
si exista functia ¢ : I — J,p(x) = V1 — 22, Vr € I al.

{(x,y) e I x J: F(z,y) =0} = {(z,0(x)) : x € I}

2). Fie acum (z, yo) = (1,0); sa presupunem ca exista intervalele deschise
I,JCR,1€1,0€ Jsicaexista o functie ¢ : I — J a.l.
{(z,y) € I x J: F(a,y) =0} ={(z,¢(x)) : x € I}.

Atunci exista n € N al., z, = /1 — # € I, iar —%,% € J i astfel
(s —3)s (T ) € {(2,y) € T x J 2 F(z,y) = 0}
rezultd atunci & ¢(z,) = —+ si ¢(z,) = 1, ceea ce este absurd.

Formulam urmatoarea teorema de existenta si derivabilitate pentru functii
de o variabila definite implicit.

3.7.2 Teoremi (teorema functiilor implicite). Fie D C R? o mulfime de-
schisa, F': D — R gi (xo,90) € D a.i. sa fie verificate urmatoarele conditii:

1) F(anyO) = 07

2). F e CYD),

oF

3). 8_y(x0’y0) # 0.

Atunci exista intervalele deschise I,J C R cu (zo,y0) € I X J C D i
exista o functie p : I — J cu proprietatile:

o). {(w,y) €1 xJ: F(z,y) = 0} = {(z, 0(x)) : v € I},

b). o este de clasi C' pe I i, Vo € I,

el
¢'(z) = “9F
)

Demonstratie. Vom prezenta doua demonstratii pentru aceasta teo-
rema.

I. Prima demonstratie se bazeaza pe proprietatea de semn local a functi-
ilor continue si pe proprietatea lui Darboux (o functie continua care ia valori
de semn contrar la capetele unui interval se anuleaza pe acel interval).
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OF OF
Deoarece 0 este continua pe D si a—(xo,yo) # 0 atunci exista o
Y Y

- . OF . . 9
vecinatate a lui (xg,yo) pe care 5y &€ acelagi semn ca in (zg,yo); sa pre-
Y

supunem ca acest semn este pozitiv.
Fie deci I1 = [a,b] si J = [c, d] astfel incat

(95073/0) € (CL, b) X <C> d) g [1 x J g D §1 g_z(‘xay) > O,V(l',y) € (CL> b) X (C, d)

Fie g : [e,d] — R, g(y) = F(x0,y); atunci g este derivabila pe [c,d] si
9'(y) = a—y(fvo,y),Vy € [c,d].

Rezulta ca functia g este strict crescatoare pe [c,d] si, cum g¢(yo) =

F(‘r()vyO) - 07 g(C) <0< g(d)
Functiile he, hy : [a,b] — R, h.(z) = F(x,c), hg(z) = F(x,d),Vz € [a, b

sunt continue si
he(zo) = F (o, ¢) = g(c) <0 < g(d) = F(xo,d) = ha(z).

Rezulta ca exista o vecinatate a punctului zy pe care functia h,. este negativa
si hq este pozitiva. Fie deci I un interval deschis a.i. xo € I C (a,b) si

F(z,¢) = he(z) <0< hy(z) = F(z,d),Vr € 1.

Deoarece pentru orice € I F'(x,-) este o functie continua exista p(z) € (¢, d)
astfel incat F'(z,¢(x)) = 0. Pe de alta parte I x (¢,d) C (a,b) x (¢, d) si deci,
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Ve el,

oF
a_y(x7y) > O,Vy € [Cv d]

Atunci F(z,-) este strict crescatoare pe [c,d] si deci p(z) = y este singurul
punct din intervalul [c, d] pentru care F(z,y) = 0.

Astfel am pus in evidenta o functie ¢ : I — J = (¢,d) asa fel incat,
oricare ar fi (z,y) € I x J, F(z,y) =0 <= y = p(z) ceea ce este echivalent
cu egalitatea:

{(z,y) € I x J: F(z,y) =0} = {(z,p(x)) : x € I}.

Sa demonstram intai ca ¢ este continua pe 1.
Fiexy € I,e >0sic; = p(r1) —e,dy = p(xy) + ¢

y

d [ ;‘
d, |
(SRS - xO»ﬁUO):
ol f T AT \
S i :
e bl ;
x; —gp oLxto

L x; X0 U x
[l I "

Din discutia facuta mai sus asupra semnului lui F rezulta F/(z1,¢1) < 0 <
F(x1,d;). Utilizand iarasi proprietatea de semn local a functiilor continue,
exista § > 0 aga fel incat oricare ar fi x € (zy — 0,21 + 0), F(z,¢1) < 0 =
F(z,¢(z)) < F(z,dy) si atunci ¢; = p(21) — e < p(x) < ¢(z1) + € = d; sau
lo(x) — p(z1)| < e. Rezultd ca ¢ este continua in x; si deci, cum z; este
arbitrar in I, ¢ este continua pe [.

Sa aratam acum ca ¢ este derivabila pe 1.

Fixam un punct z; € [ si fie y; = ¢(x1); (21,y1) € I x J C D si deoarece
F € CY(D), F este diferentiabild in (z1,y;). Deci existd o functie a : D — R
continua si nula in (z1,y;) astfel incat

OF OF

F(z,y) = F(z1,y1) + %(xlayl) (r—x1) + a_y(xlayl) (Y — )+

+a(z,y) -/ (z —21)? + (y — )2, V(z,y) € D.
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In particular, oricare ar fi & € I, (z,¢(z)) € D si deci, inlocuind in relatia
precedentd pe y cu ¢(x) i tinand cont ca F(z,p(z)) = 0 = F(z1,11),
obtinem

o:%gmbm»@—wn+%§uhm»wm»—wm»+

talz, o(@) v/ (w =21 + (p(&) — p(er))%,Va € T

oF
§i7 cum _(xbyl) > 07

dy
oF
J— —_— x y
QO(QJ) ¢<x1> _ _g;( 1 yl) o ")/(l'), unde
r = a_y(xla Y1)
88_5(1"17 yl) =T
Evident |y(z)| < wﬂx € 1. Deoarece ¢ este continua, lim ¢p(z) =
3—y($1,yl) Tl
e(x1) = 11 si deci lim a(z, p(x)) = a(z,y1) = 0; rezulta ca lim y(x) =0
r—x1 r—x
si deci
lim p(x) — p(z1) _ _%—5@17?/1)
T—x1 r — T %—i(fﬂl,yl)
Cum z; este arbitrar in I, ¢ este derivabila pe [ si
OF
—(z,p(x
Y'(x) = ——gf,( il )),Vx el
O (2, ()
< o o N . . OF . .
Sa observam ca ¢ este continua pe [ si ca o S1 o sunt continue pe d;
x Y

atunci ¢’ este continua pe I si deci ¢ € C'(I).
II. Vom prezenta acum o demonstratie bazata pe teorema de inversare
locala.
Fie f : D — R? functia definita prin f(z,y) = (z, F(x,y)), oricare ar fi
(x,y) € D. Observam ca f € CY(D), f(xo,%0) = (70,0) si

1 0
det (J; (0, 30)) = | OF OF oF

= — (2o, 0.
%(lEo,yo) 8_y(x0’y0> Gy( 0:%0) #
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Rezultd ca J;(zo, 1) este nedegenerata si deci ca df (zo,yo) : R* — R? este
un operator liniar si bijectiv. Conform teoremei de inversare locala exista un
deschis U C R? astfel incat (zg,y) € U C D,V = f(U) este un deschis din
R? i f este un difeomorfism intre U si V.

Putem presupune fara sa restrangem generalitatea ca U este un produs
cartezian de doua intervale deschise U = I' x J,xg € I' g1y € J.

Deoarece V' este deschisa si f(zo,v0) = (20,0) € V, exista un interval
deschis I; C I’ i un interval deschis J; astfel incat (z9,0) € [; x J; C V.

(z0,50) = [ (%0,0) € f~H (L1 x J1) CU.

Deoarece [ este aplicatie continua, f~1(I; x J;) este o multime deschisa
si deci exista I - un interval deschis - astfel incat xqg € I C I si exista un
interval deschis J' asa fel incat (zg,y0) € I x J' C f~1(I; x Jy).

Fie py : R? — R, py(u,v) = v,V(u,v) € R?* (proiectia pe coordonata a
doua). Atunci ps este operator liniar si deci este diferentiabil pe R,

Oricare ar iz € I, (z,0) € [ x J; C I, x Jp, de unde

00 e UL x L) CU=1 xJ

si deci po(f~1(x,0)) € J.

Definim atunci ¢ : I — J prin ¢(z) = po( f~1(,0)),Vz € I.

Pentru orice (z,y) € I x J, F(z,y) =0 < f(z,y) = (,0) < (z,y) =
[@,0) = y = pa(a ) = pa(f1(@,0) = p(x) = (5,9) = (2.(2)),
pentru orice x € I.

Deci ¢ verifica conditia a) din concluzia teoremei. In plus, oricare ar fi
z €I, F(z,o(x)) = 0. Deoarece ¢ este o compunere de functii diferentiabile
(p=poofltog,undeg: I — IxJy,g(x)=(x,0)) ea este derivabila si deci
putem deriva relatia de mai sus dupa x; obtinem:

G (0@ + F () ¢a) =0

de unde gasim sgi relatia b) din concluzia teoremei.
F € CY(D) ceea ce antreneaza continuitatea lui ¢’ pe I.

3.7.3 Observatii. 1). In exemplul 3.7.1, 2) nu este verificatd conditia 3).

din teorema precedentd; intr-adevar, (1,0) = 2y|y=0 = 0 si, asa cum am

dy

vazut, nu este posibila explicitarea ecuatiei F'(z,y) = 0 1in (1,0).
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2). Daca F' € C?(D) atunci functia ¢ este de clasd C? pe I; derivata a
doua se obtine folosind formula de derivare a functiilor compuse in relatia
care da derivata lui ¢.

[GQF 0*F

PP OF 1 OF OF [PF 0T
ox?  OJyox L Jdy  Ox

0x0y * 0y?

- 90’(96)} |

Daca in formula de mai sus inlocuim valoarea derivatei lui ¢ obtinem:

0°F (8F)2 O°F OF OF O°F (8F>2

02 \oy) ey o oy T a2 \ox

(%)

unde toate derivatele partiale ale lui F' sint calculate in (z, p(z)).

¢'(z) =
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3.7 Functii definite implicit

3.7.4 Exemplu (foliul lui Descartes). Sa consideram functia definita im-
plicit prin ecuatia F(z,y) = 2 + y> — 3xy = 0. Ecuatia data este simetrica
in (z,y) ceea ce inseamna ca {(z,y) € R* : F(z,y) = 0} = {(y,2) € R*:
F(x,y) = 0}. Rezulta ca multimea {(z,y) € R* : F(z,y) = 0} este sime-
trica fata de prima bisectoare. Punctele in care prima bisectoare intalneste
multimea de mai sus sunt (0,0) si (%, g) Vom figura portiunea din multime
plasata deasupra bisectoarei intai (y > x). Utilizand sirul lui Rolle putem
arata ca, oricare ar fi * € (—o0, %], exista un unic y > x asa fel incat
F(z,y)=0.
2 _

FecC! (Rz) si (Z_]; = 3y®—3z. Daci rezolvam sistemul { is —1_—;3_—03xy _ 0

obtinem punctele in care nu putem aplica teorema functiilor implicite: (0, 0),
(v/4,v/2). Pentru orice alt punct (zq, ) € R? se ok2)§in intervalele I si J si

r =Yy

functia ¢ : I — J derivabila cu derivata ¢'(x) = 5> vz € I. Punctele
r—y

22 —y=0

3, .3 _
4y’ —3xy =0
solutia (3/2, v/4); daca observam ca ¢”(3/2) < 0, rezulta ca punctul critic de
mai sus este un punct de maxim local.

critice se obtin rezolvind sistemul { care ne conduce la

Notand y = ¢tz in F(x,y) = 0, obtinem ecuatiile parametrice ale foliului

117
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3t
xr =
lui Descartes: t332§ 1 ,t € R. Tabelul de variatie al lui x ca functie
YT B
de t este urmatorul:
t | —oo —1 0
2’ (t) + +
z(t) | 0— "% coo— 0

Se observa ca x — —oo0 <t — —1,t > —1; atunci putem sa calculam panta

si ordonata la origine a asimptotei oblice la graficul lui ¢ : m = lim,_, ¥y
T

. . . . 3(t% + 1) .

tlirgt =—lgin=Ilim,._ (y—mz)=1lim__, ST —1. Rezulta ca

graficul functiei admite ca asimptota dreapta de ecuatie x +y + 1 = 0.

Tabelul de variatie al singurei solutii y = ¢(x) > x a ecuatiei F(z,y) =0
va fi:

¢'(z) ~ 0 +OO+ 0 -
p(x) Hoo ~ 0 —~ /4 ~ 3

Graficul functiei implicite ¢ arata ca in figura de mai jos:

)

(V2,V4)

A~
[NJ[eN]
IV

~—

-

0,0)

Daca simetrizam acum graficul de mai sus fata de prima bisectoare obtinem
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graficul foliului lui Descartes.

Y

(V2,V/4)

(V4,V2)
0,0)

Din figura putem observa ci explicitarea este imposibila in punctele (0, 0)

si (V4,V2).

In cele ce urmeazi vom prezenta o aplicatie a teoremei 3.7.2.

Aplicatie. Fie un interval K C Rgifie f : K — R, f € CYK) si
yo € K ai. f'(yo) # 0. Definim atunci F: R x K — R, F(x,y) =z — f(y).
Fie 9y = f(yo); atunci sint indeplinite conditiile din teorema 3.7.2 gi deci
exista intervalele I,J C R, xy € Io,yg € j,I x J C R x K i o functie
@ I — J derivabila a.i. {(z,y) € I xJ:z= f(y)} = {(z,p(x)) : z € I}

si¢(z) = ol Putem constata ugor ca (f o p)(z) = x,Va € I gi ca

(po fly) =y,Yy € p(I). Rezulta ca ¢ este inversa a functiei f local pe o
vecinatate a lui g si obtinem formula de derivare a inversei unei functii de o
variabila.

Incheiem acest paragraf cu doua teoreme care extind rezultatul din 3.7.2
la cazul functiilor scalare de mai multe variabile si respectiv la cazul functiilor
vectoriale de mai multe variabile.

3.7.5 Teoremd. Fie F : D C R* xR — R gi 2° = (29,...,29),1° €
R, (2°,94°) € D a.i. sd fie verificate urmdtoarele conditii:

1). F(2°,4°) =0,

2). F e CY(D),

9. Gl £ 0.

Atunci existd doud mulfimi deschise I CRF J CR cu (2°,94°) € I x J C

D si exista o functie ¢ : I — J cu proprietatile:
a). {(z,y) € I xJ: F(z,y) =0} = {(z,9(z)) : x € I},
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b). ¢ este de clasi C' pe I si, Vo = (v, ....,ax) € [[Vi=1,...n

oo, Gl ela)
a—y(% p(z))

3.7.6 Teoremd. Fie ' : D C R* xR — RLF = (F,...,F) si 2° =
(29, ..,2%) € R 4% = (49,...,99) € R (2°,4°) € D, asa fel incit sa fie
verificate urmdatoarele conditii:

1). F(a%y’) =0,

2). F e CYD),

D(Fy,...F) o ¢
3). ————=(z",y°) #0.
) D(yh . 7yl) ( )
Atunci existd doud multimi deschise I CR*, J C R cu (2°,94°) € Ix J C

D si exista o functie
© = (p1,...., ) : I — J cu proprietatile:
W) {(r.9) € 1 x J: F(w,y) = 0} = {(z, p(x)) : 7 € T},
b). ¢ este de clasi C' pe I si, Vo = (vy,....,a) € [[Vi=1, ..., k,

;

D(F\, Fs, ..., F)
1 (z) = — D(i, Y2, -, Y1) (@, ¢1z)
D(yr,osyn)

D(Fy,...F_1, F)
¢y (z) = — D(y1, s Y11, 1) (= ¢l2))
a{lfi D(Fl,,.Fl)

\ D(y1, ..., 1) (= ¢lz))

Demonstratie. Vom schita demonstratia teoremei; demonstratia este
asemanatoare demonstratiei Il a teoremei 3.7.2; ea se bazeaza pe teorema de
inversare locala (teorema 3.6.7).

Fie f : D C R* x R' = R* x R, f(x,y) = (x, F(z,y)), oricare ar fi
(Iay) (1717 Tk Y1, 7yl) S D eVIdent f € Cl( )7 f(%y) =

= ('rh”' ,$k,F1(.T1,"' y Lhy Y1y Jyl)7"' 7E<$17"' y Ly Y1, -0 J/l))
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si deci
1 0 0 0
0 .- 1 0O ... 0
OF: or, oF oF;
Jp(z,y) = == ... =L =L ... =1
0xq oxr, O oy,
dxq Oz, Oy Y 7 (i) x (k+1)
D(Fy,-- ,F)

Rezulta ca detJy(x,y) = (z,y). Din ipoteza detJ(z",y") # 0

D(yla'" 7yl)
si deci df (2°,4°) : R* — R* este o bijectie.

Teorema de inversare locald ne asigurd ci existd un deschis U C RF
astfel incat (2°,94°) € U C D, V = f(U) este deschis in R*™ si f este
difeomorfism intre U si V; putem presupune fara a restrange generalitatea
ca U =1 xJ,unde I' C R* J C R' sunt multimi deschise.

Deoarece f(2°,¢°) = (2°,0) € V, existd multimile deschise I, C I C R* si
Ji C R astfel incat (2°,0) € I; x J; € V de unde (2°,9°) € f~' (I, x.J;) C U.

Functia f fiind continua, f~'(I; x J;) este multime deschisa si deci exista
doi deschisi I C I; C R*, J’ C R! astfel incat

(") e Ix JCf I xJ)CU=1T xJ;

deci (2,9 eIxJC L x JCI'xJ=D.

Fie p : R x R — R py(,y) = y,V(z,y) € RF x R" ( proiectia pe R'); p,
este operator liniar si deci este diferentiabil.

Definim ¢ : I — R’ prin p(z) = pi(f~*(z,0)),Vz € I.

Oricare ar iz € I, (z,0) € I x J; C I} x J; CV sideci f1(x,0) € U =
I' x J; astfel p(z) = p(f~(z,0)) € J gideci p: I — J.

In plus, dact y = ¢(z), atunci (z,y) = f~(2,0), de unde F(x,y) = 0.
Rezulta imediat ca {(z,y) € I x J: F(x,y) =0} = {(x,p(z)) : x € I}.

¢ este compunere de trei functii diferentiabile (o = p;o f~* o g, unde g :
I — IxJy,g(x) = (x,0)) si deci ¢ este diferentiabila. Daca ¢ = (¢1,---,¢1)
atunci, oricare ar fi x € I,

Fl(xlf" afl?k:aSOl(fl?la"‘ 7'1:]6)7"' 7¢l($1"" ,l'k-)) =0

E(xly"' 7xk7()01(x17"' 7xk)7"' 7()01(:617”' 7xk)) =0
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Fie i € {1,--- ,k}; derivand in relatiile de mai sus dupa x; obtinem
oFy O0F, 0 oFy 0
1_|_ L, ¢1+..._1. (‘Ol:()
Oxr; Oy, Oux; dy;  Ox;
......... Sau
oF, 0F, 0 oF, 0
Jr; Oy Ox; dy; Ox;
8E 8901 + + 6F1 890l o _8F1
dy,  Ox; oy, Ox; Oy
oF;, 0, P oy 0pr  OF
Oy1  Ox; oy, Ox;  Oxy
Acesta este un sistem liniar de [ ecuatii cu [ necunoscute: ?;01,--- ,ggpl.
ZT; ZT;

Determinantul sitemului este

D(Fla"' 7F1l)
D(yly"' 7yl)

Sa remarcam ca f : U — V este difeomorfism si deci, oricare ar fi (z, ¢(z)) €
IxJCIxJ=Udf(z,p(r)): RF"" — R¥" este o bijectie (vezi teorema
3.6.5) ceea ce antreneaza ca J¢(z,(x)) este nesingulara.

Rezulta ca sistemul de mai sus este compatibil si determinat iar solutia
sa este data de

(CL’, QO(ZL‘)) = det (‘]f(‘r7 90('1;>)) :

( D(Fl,Fg,...,Fl)
¢ (z) = — D(@i, y2, - Y1) (@, ¢12)
D(y1, ..., y1)

D(Fh ...,Fl_hﬂ)
a(pl (I’) = D(ylu v Yi—1, xz) (ZZ', @(37))

 D(R,...F)
D(y1, .., u1) (@ ()




Capitolul 3

Diferentiabilitatea functiilor de
mai multe variabile

3.8 Extreme conditionate

3.8.1 Definitie. Fie f: ACRY - R, i<k, ¢1,...,q1 : A — R; considerdam
multimea F'={x € A: g1(x) =0,...,g(x) =0} C A.

Un punct a € F' se numeste punct de minim local conditionat pentru
f in raport cu legaturile date de functiile gy, ..., g; daca exista o vecinatate a
sa Ve V(a) a.i. f(x)> f(a),Vz e FNV.

Un punct a € F se numeste punct de maxim local conditionat pentru
f in raport cu legaturile date de functiile g1, ..., g daca exista o vecinatate a
sa Ve V(a) a.i f(x)< fla),Vze FNV.

Punctele de minim local conditionat sau de mazim local conditionat se
numesc puncte de extrem local conditionat sau puncte de extrem
local cu legaturi (conditiile sau legaturile fiind date de relatiile g;(x) =
0,i = 1,...,1). Daca nu este pericol de confuzie, vom mai spune prescurtat
ca un astfel de punct este un punct de extrem conditionat pentru f.

3.8.2 Observatii. 1). Punctele de extrem local conditionat pentru f sint
puncte de extrem obignuite pentru restrictia functiei f la multimea F, f|,.
Cu toate acestea nu putem aplica teoria dezvoltata mai sus pentru a gasi
aceste puncte. Reamintim ca am cautat punctele de extrem ale unei functii
printre punctele critice interioare multimii de definitie a functiei. Este insa
posibil ca multimea F' sa nu aiba nici-un punct interior.
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De exemplu, fie f,g : R* — R, f(z,y) = 2® + 4, g(x,y) = 2+ y —
1,V(z,y) € R®. Atunci F = {(z,9) ER* 10 +y—1=0} = {(2,1 1) : 2 €
R} reprezinta o dreapta in R? i deci F' nu are puncte interioare.

flo(z,1—2) =22? — 22+ 1,Vz € R, si deci are un punct de minim local
in punctul (%, %) € F'; rezulta ca punctul (%, %) este un punct de minim local
conditionat pentru functia f. Remarcam ca functia f are un minim absolut
pe R? in (0, 0).

2). Asa cum am observat in exemplul de mai sus, daca sistemul

gl(l'l, ,xk) = 0
()
g1, ..., x) =0

s-ar putea rezolva gi deci am determina [ dintre numerele xq, ..., x; functie
de celelalte k — [ atunci, inlocuindu-le, functia f ar ramine functie de k — [
variabile independente (fara legaturi) si punctele de extrem s-ar putea deter-
mina prin metoda expusa in sectiunea precedenta. In general acest lucru nu
se poate face explicit insa, daca g = (g1, ...,q) : A C R* — R! este o functie
de clasa C'! pe A si rangul matricii jacobiene .J; intr-un punct a € A este egal
cu [ - numarul conditiilor impuse - atunci sistemul de mai sus admite local
(pe o vecinatate a punctului a) o solutie; deci [ dintre variabilele x1, ..., xy
sint functii (chiar functii diferentiabile !) de celelalte k—1. In cele ce urmeazi
vom presupune ca aceste conditii sint indeplinite si ne propunem sa gasim
metode specifice de obtinere a punctelor de extrem conditionat pentru f.

Urmatoarea teorema prezinta o conditie necesara pentru ca un punct sa
fie punct de extrem local conditionat.

3.8.3 Teoremi. Fie D C R* o multime deschisd, fie | < k si functiile
f,91,91: D — R declasi C* pe D; fie F={zx € D : gi(z) =0, ..., q/(z) =
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0} si a € F un punct de extrem local conditionat pentru f. Atunci existd l
numere reale \i, ..., \; a.1.

Vf(a) =X -Vgi(a)+..4+ XN -Vgla).

Demonstratie. Vom schita demonstratia teoremei in cazul [ = 1. Pre-
supunem deci ¢d f,g: D — R, f,g € CY(D),F = {z € D : g(z) = 0} si
a € F un punct de minim local pentru f conditionat de g; exista atunci o
vecinatate V' C D asa al. f(x) > f(a),Yx € VNF.

Din observatia precedenta vom presupune ca rang(J,(a)) = 1. Deoarece

Jy(a) = (%(a) e %(a))lm aceasta antreneaza ca una dintre derivatele
partiale din matricea jacobiana este nenuld. Vom presupune ca aa—i(a) # 0.
Putem atunci aplica atunci teorema 3.7.5 (varianta scalara a functiei de mai
multe variabile definita implicit). Exista deci deschisii I C R*! J CR ai.
(@,ar) = ((ar, -+ ,ax-1),ax) € I x J CV C D si exista functia ¢ : I — J
cu proprietatile:
a). {(T, k) = (x1, -+ yap—r, ) €I X J i glan, - ,ap) =0} =

={(z, (7)) : &= (x1, - 2p-1) € [} i

oo @@
b) a—xl(:v):—@—,V:vEI,Vz:l,,k‘—l

IxJCV CDsig(re®) =0 dec
z)) > f(a). Rezulta ca functia h : I — R

(Z,0(x)) € VN F de unde f(Z,¢(
definita prin h(z) = f(z,¢(z)),VZ = (21, -+ ,x5_1) € I are un minim local
in punctul @ = (ay, -+ ,ax_1) € I; deoarece h este diferentiabila in a rezulta
oh ,_
8_x1(a) =0
din teorema lui Fermat (teorema 3.5.2) ca e , de unde
P @) =0
Qa =
0Tk
( af of dp .
9z, @ +a—m(a)'a—xl(a) =0
of of o
D ay+ 2wy L@ =0 .
6’x2 @)+ 8£l}k (a) 81’2 (a)
of a of a ¢ a) =0
( 0711 Oz, 0xp—1 B
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In relatiile de mai sus inlocuim derivatele partiale ale lui ¢ si obtinem

( o

of ™ g
81,1(@) - @ a) ’ ax1<a’)
&ck
of
of a) = a_ka) % (a)
O0xp_1 B @(a) Oxp_y
ox
0
of . Y oy
7= B
\ 833'k a)
& ()
Notam \ = 6; si aunci Vf(a) = X - Vyg(a). .
67(@)
k

3.8.4 Definitie. Numerele \q, ..., \; se numesc multiplicatori Lagrange
asociali functiei f si legaturilor gy, ..., g; in punctul critic conditionat a.

3.8.5 Observatie. In teorema precedenta

viw= (3@ . 5iw)

este gradientul lui f in a (vezi observatia 3.2.7, 1)) si Vgi(a), ..., Vgi(a) sint
gradientii functiilor ¢4, ..., ¢; In a.

3.8.6 Definitie. Consideram sistemul de k + [ ecuatii:

(of 91

oy (w1, .., m8) = Ar- P (T4, ey p) + oo+ A 8_3:1(961’ o TR)
8f . agl agl
(EC) axk(ﬂfl,...,xkz) =)\ (%k( Loy T) + oo+ N axk(a:l,...,xk)

g1(x1,...;x) =0

L aglzy,.x,) =0
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cu k + [ necunoscute.

Daca sistemul are o solutie, (ai, ..., ax, A1, ..., \) atunci spunem cd punc-
tul a = (ay,...,q;) este un punct critic conditionat pentru functia f in
raport cu legaturile date de functiile gy, ..., g; 1ar A1, ..., \; sint multiplicatorii
Lagrange asociati functier f si legaturilor gy, ..., g, in acest punct.

3.8.7 Observatie.

Tinind cont de definitia precedenta putem reformula teorema 3.8.3:

Punctele de extrem conditionat ale functiei f in raport cu legaturile date de

functiile g1, ..., g1 se gasesc printre punctele critice conditionate ale functier.
Se observa ca o solutie a sistemului din definitia precedenta ne pune

la dispozitie atit punctele critice conditionate (potentiale puncte de extrem

conditionat) cit i multiplicatorii Lagrange asociati.

3.8.8 Definitie. Fie A, ..., \; multiplicatorii Lagrange asociafi functiei f :
D C R* = R si legaturilor gi,....,q : D — R in punctul critic a =
(a1,...,ar) € F ={x € D : g1(x) = ... = gi(x) = 0}; functia L : D — R,
definita prin L(z) = f(x) — Mgi(z) — ... — Ngi(x),Vx € D, se numeste
functia lui Lagrange.

3.8.9 Observatii. 1). Deoarece (ay,...,ax, A1, ..., ;) este o solutie a sis-
temului din definitia 3.8.6, remarcam ca a este un punct critic al functiei L
si ca L(a) = f(a).

2). Daca a este un punct de minim local pentru L atunci exista o
vecinatate a sa V' aga fel incit, Vo € V N A, L(z) > L(a) = f(a); rezulta
ca, Ve € VN F, f(x) = L(x) > L(a) = f(a), ceea ce arata ca un asemenea
punct este punct de minim local conditionat pentru f. La fel se arata ca
daca a este punct de maxim local pentru L atunci el este punct de maxim
local conditionat pentru f.

Rezulta ca este suficient sa studiem comportamentul lui L in punctul critic
a; acest studiu se va face, conform teoremei 3.5.10, analizind comportarea
formei patratice de k variabile data de diferentiala a doua a functiei lui

2L
Lagrange in a, d*L(a) = (a)dx;dz;.

Cele spuse mai sus argumenteaza urmatoarea teorema:

3.8.10 Teorema. Fie a un punct critic conditionat al functiei f in raport
cu legaturile date de functiile g1, ..., g si L functia lui Lagrange.



128 CAPITOLUL 3. DIFERENTIABILITATEA FUNCTIILOR

e Dacd d*L(a) este pozitiv definitd a este un punct de minim local conditionat
pentru f.
e Dacd d?L(a) este negativ definitd a este un punct de mazim local conditionat
pentru f.

3.8.11 Observatie. Este posibil ca d?L(a) s& nu fie pozitiv sau negativ
definita si totusi sa putem decide asupra punctelor critice conditionate. Ast-
fel, deoarece (xy, ..., xx) este o solutie a sistemului (C') (observatia 3.8.2, 2)),
dz;;i = 1,...,k nu sint independente. Daca diferentiem conditiile (C') in
punctul a obtinem sistemul

891 691 .

%”01 (a)dzy + ... + gxk (a)dzr, =0
92 92

By (a)dzy + ... + o (a)dzr, =0

)

I (@)day + oo+ w2 (a)day, = O

Aga cum am remarcat in 3.8.2, 2), presupunem tacit ca rangul matricii jaco-
biene Jig, .. 4)(a) este [; atunci sistemul de mai sus permite sa determinam
liniar [ dintre dxq,...,dx; in functie de celelalte k — [ diferentiale si astfel
d*L(a) este o forma pétratica depinzind de k — [ variabile; dupa cum aceasta
este pozitiv definita, negativ definita sau nedefinita, a este un punct de minim
conditionat, de maxim conditionat sau nu este punct de extrem conditionat.

3.8.12 Exemplu. Si se determine distanta de la punctul (x¢, 1) € R? la
dreapta (d) ax + by + ¢ = 0.

Consideram functia f : R* — R definita prin f(z,y) = (z—20)>+(y—y0)?;
sa determinam punctul de minim conditionat de g(x,y) = ax + by + ¢ = 0.
Sistemul (EC') care determina punctele critice conditionate devine in acest
caz:

2(x — ) = Aa
2(y —yo) = \b
ar +by+c=0
Aa
1 = Xo + —
de unde )\26 si, Inlocuind in ecuatia dreptei, obtinem multiplica-
Y1 ="Yo + B}

—2(axo + byo + ¢)
a? 4+ b?

torul A = si punctul critic conditionat (x1,y;).
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Functia lui Lagrange este L : R* — R, L(z,y) = (z — z0)> + (y — y0)? —
Max + by + ¢) si deci d*L(z1,y1) = 2(dx)* + 2(dy)? este pozitiv definita.
Rezulta ca (z1,y;) este punct de minim conditionat pentru f.

. . , ,  Aa*+b?)

Valoarea minimului este f(z1,71) = (x1—x0)*+(y1—%0)* = — =
(azo + byo + ¢)?

a? + b2 '
Distanta de la (zg,9) la dreapta (d) se va obtine extragind radical din

. . . . |axo + by + ¢
valoarea minima a lui f; se obtine valoarea cunoscuta Jrr
a® +




