
Capitolul 1

Elemente de topologie ı̂n Rk

1.1 Structura de spaţiu vectorial pe Rk

Vom nota cu Π (respectiv Σ) planul (spaţiul cu trei dimensiuni) orientat şi
cu

R2 = R× R = {(x, y) : x, y ∈ R} = {(x1, x2) : x1, x2 ∈ R};
R3 = R×R×R = {(x, y, z) : x, y, z ∈ R} = {(x1, x2, x3) : x1, x2, x3 ∈ R}

Aplicaţiile
ϕ2 : R2 → Π, ϕ2(x, y) = P (x, y) ∈ Π

şi
ϕ3 : R3 → Σ, ϕ3(x, y, z) = P (x, y, z) ∈ Σ

ŝınt bijecţii. Vom identifica ı̂n mod curent un punct din plan (spaţiu) cu o
pereche ordonată (triplet ordonat) din R2 (R3).

∀A ⊆ R2(R3), ϕ2(A)(ϕ3(A)) se numeşte imaginea plană (̂ın spaţiu) a
mulţimii A.

1.1.1 Exemple 1. Fie A = {(x, y) ∈ R2 : x4 ≤ y2}. Imaginea plană a
mulţimii A este porţiunea haşurată din Figura 1 de mai jos.
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2. Mulţimea A = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 1} are drept imagine
un hiperboloid de rotaţie din R3 a cărui imagine este schiţată ı̂n Figura 2 de
mai sus.

Distanţa dintre două puncte

Fie (x, y, z), (u, v, w) ∈ R3 şi fie d distanţa dintre aceste două puncte (vezi
Figura 3); atunci

d =
√

d2
1 + (z − y)2 =

√
(x− u)2 + (y − v)2 + (z − w)2.

În cazul particular al planului (deci dacă z = 0), se obţine
d =

√
(x− u)2 + (y − v)2 iar pe dreaptă d = |x − u| şi deci se regăsesc

formulele cunoscute pentru distanţa dintre două puncte ı̂n plan şi pe dreaptă.
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Inspiraţi de aceste cazuri particulare vom introduce o distanţă ı̂ntre două
puncte arbitrare din Rk.

1.1.2 Definiţie. Fie x = (x1, x2, ..., xk),y = (y1, y2, ..., yk) ∈ Rk; definim
distanţa dintre punctele x şi y ca fiind numărul pozitiv

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + ... + (xk − yk)2.
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Distanţa dintre punctele spaţiului Rk are următoarele proprietăţile.

1.1.3 Teoremă.

1). d(x,y) = 0 ⇔ x = y;
2). d(x,y) = d(y,x),∀x,y ∈ Rk;
3). d(x, z) ≤ d(x, z) + d(y, z),∀x,y, z ∈ Rk.

Demonstraţie. Vom demonstra numai proprietatea 3). Fie x = (x1, ..., xk),
y = (y1, ..., yk), z = (z1, ..., zk) ∈ Rk; atunci, utiliẑınd inegalitatea lui Cauchy-
Schwarz-Buniakowski (

∑k
i=1 α2

i ·
∑k

i=1 β2
i ≥ (

∑k
i=1 αiβi)

2) obţinem

[d(x, z) + d(y, z)]2 =

=
k∑

i=1

(xi − zi)
2 +

k∑
i=1

(yi − zi)
2 + 2

√√√√ k∑
i=1

(xi − zi)2 ·
k∑

i=1

(yi − zi)2 ≥

≥
k∑

i=1

(xi − zi)
2 +

k∑
i=1

(yi − zi)
2 + 2 ·

k∑
i=1

(xi − zi)(yi − zi) =

=
k∑

i=1

(xi − yi)
2 = d2(x,y).

�

1.1.4 Definiţie. O funcţie d care la orice două puncte x, y ale unei mulţimi
X asociază un număr pozitiv d(x, y) şi care verifică proprietăţile 1), 2) şi 3)
din teorema precedentă se numeşte metrică pe X. Metrica definită ı̂n 1.1.2
se numeşte metrica euclidiană pe Rk.

În R2 adunarea a două puncte x = (x1, x2) şi y = (y1, y2) se face după
“regula paralelogramului” ilustrată mai jos:
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Suma este x + y = (x1 + y1, x2 + y2); vom defini după acelaşi model
adunarea ı̂n Rk.
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1.1.5 Definiţie. Fie x = (x1, x2, ..., xk),y = (y1, y2, ..., yk) ∈ Rk şi t ∈ R;
definim adunarea prin x + y = (x1 + y1, ..., xk + yk) şi ı̂nmulţirea cu scalari
prin t · x = (tx1, ..., txk).

Faţă de aceste două operaţii Rk se organizează ca un spaţiu vectorial real,
adică ŝınt verificate proprietăţile:

1. x + (y + z) = (x + y) + z,∀x,y, z ∈ Rk (asociativitatea adunării).
2. ∃ 0 = (0, ..., 0) ∈ Rk a.̂ı. x + 0 = x,∀x ∈ Rk (0 se numeşte element

neutru la adunare;
3. ∀x ∈ Rk,∃(−x) ∈ Rk a.̂ı. x + (−x) = 0 (−x se numeşte opusul

elementului x).
4. x + y = y + x,∀x,y ∈ Rk (comutativitatea adunării).
Din proprietăţile 1. – 4. deducem că (Rk, +) este un grup comutativ.
5. t · (x + y) = t · x + t · y,∀x,y ∈ Rk,∀t ∈ R.
6. (t + s) · x = t · x + s · x,∀t, s ∈ R,∀x ∈ Rk.
7. (t · s) · x = t · (s · x),∀t, s ∈ R,∀x ∈ Rk.
8. 1 · x = x,∀x ∈ Rk.

1.1.6 Definiţie. ∀ A ⊆ Rk,∀ x ∈ Rk,∀ t ∈ R definim
x + A = {x + y : y ∈ A} (translata mulţimii A cu vectorul x) şi
t · A = {t · x : x ∈ A}.

1.1.7 Definiţie. Fie x = (x1, ..., xk) ∈ Rk; numărul pozitiv

‖x‖ = d(x, 0) =

√√√√ k∑
i=1

x2
i

se numeşte norma elementului x.

1.1.8 Propoziţie. Aplicaţia ‖ · ‖ : Rk → R+ este o normă pe Rk adică
verifică condiţiile:

1. ‖x‖ = 0 ⇔ x = 0.
2. ‖t · x‖ = |t| · ‖x‖,∀t ∈ R,∀x ∈ Rk.
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖,∀ x,y ∈ Rk.

1.1.9 Observaţii. (i) Rezultă din propoziţia precedentă că (Rk, ‖ · ‖) este
un spaţiu normat real.

(ii) d(x,y) = ‖x− y‖,∀ x,y ∈ Rk.



6 Capitolul 1. Elemente de topologie ı̂n Rk

Inegalitatea de la punctul 3) al teoremei 1.1.3 (inegalitatea triunghiului)
devine, ı̂n anumite cazuri, egalitate; prezentăm ı̂n definţia următoare această
situaţie specială.

1.1.10 Definiţie. Fie x,y, z ∈ R3(sau R2); spunem că z este ı̂ntre x şi y
şi notăm cu x− z− y situaţia ı̂n care d(x,y) = d(x, z) + d(y, z).
Mulţimea [x,y] = {z ∈ R3 : x− z− y} se va numi segment cu capete x şi
y.
Mulţimea [x,y) = {z ∈ R3 : x−z−y sau x−y−z} se va numi semidreaptă
cu originea ı̂n x şi care trece prin y.
Mulţimea (x,y) = [x,y)∪ [y,x) se va numi dreaptă care trece prin punctele
x şi y.
Definiţii similare se pot da pentru segmente, semidrepte sau drepte din R2.

În propoziţia următoare se dau caracterizări ale segmentelor, semidreptelor
şi dreptelor din R3.

1.1.11 Propoziţie. Fie x,y ∈ R3; atunci:
1. [x,y] = {(1− t)x + ty : t ∈ [0, 1]}.
2. [x,y) = {(1− t)x + ty : t ≥ 0}.
3. (x,y) = {(1− t)x + ty : t ∈ R} = {x + t(y − x) : t ∈ R}.

Demonstraţie.
1. Fie t ∈ [0, 1] şi z = (1 − t)x + ty; atunci d(x, z) = ‖x − z‖ = ‖t(x −
y)‖ = t‖x − y‖ şi d(y, z) = ‖y − z‖ = (1 − t)‖x − y‖ de unde rezultă:
d(x, z) + d(y, z) = ‖x− y‖ = d(x,y) şi deci z ∈ [x,y].

Reciproc, ∀ z ∈ [x,y], d(x,y) = d(x, z) + d(y, z); fie t =
d(x, z)

d(x,y)
∈ [0, 1].

Urmărind ca suport imaginea din Figura 4, obţinem:
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z3 − x3

y3 − x3

=
d(x, z)

d(x,y)
= t de unde z3 = x3 + ty3 − tx3 = (1 − t)x3 + ty3.

Similar, z2 = (1− t)x2 + ty2 şi z1 = (1− t)x1 + ty1, deci z = (1− t)x + ty.
2. z ∈ [x,y) ⇔ z ∈ [x,y] sau y ∈ [x, z] ⇔ ∃ t ∈ [0, 1] a.̂ı. z = (1−t)x+ty

sau ∃ s ∈ [0, 1] a.̂ı. y = (1 − s)x + sz. Ultima egalitate se mai scrie

z = (1 − 1

s
)x +

1

s
y iar t =

1

s
≥ 1. Rezultă că z ∈ [x,y) ⇔ ∃ t ≥ 0 a.̂ı.

z = (1− t)x + ty.
3. z ∈ (x,y) ⇔ z ∈ [x,y) ∪ [y,x) ⇔ ∃ t ≥ 0 a.̂ı. z = (1 − t)x + ty sau

∃ s ≥ 0 a.̂ı. z = (1 − s)y + sx; ultima egalitate se scrie z = (1 − t)x + ty
unde t = 1− s ≤ 1.

�

Exerciţiu. Să se arate că x + [y, z] = [x + y,x + z] = x + [z,y].

Vectori

Fie x,y ∈ Rk; segmentul orientat −→xy este segmentul [x,y] căruia i s-a asociat
o direcţie: de la originea x la extremitatea y. Observăm că [x,y] = [y,x]
ı̂nsă −→xy 6= −→yx.

Spunem că −→xy este echivalent cu −→uv dacă există z ∈ Rk a.̂ı. z + x = u şi
z + y = v şi notăm aceasta cu −→xy ∼ −→uv; observăm că −→xy ∼ −−−−→

0y − x.
∼ este o relaţie de echivalenţă pe mulţimea segmentelor orientate (este

reflexivă, simetrică şi tranzitivă). O clasă de echivalenţă ı̂n raport cu relaţia
∼ se numeşte vector.

Aşa cum am remarcat, vectorul generat de orice segment orientat −→xy este
de asemenea generat de segmentul orientat

−−−−→
0y − x care are originea ı̂n 0.

Astfel putem identifica orice element x ∈ Rk cu vectorul {z+
−→
0x : z ∈ Rk} =

{−−−−→zz + x : z ∈ Rk}. Acesta este un motiv ı̂n plus să numim elementele lui Rk

vectori.
Convenţie. În cele ce urmează vom nota vectorii x din Rk pur şi simplu

cu x, urmı̂nd să se ı̂nţeleagă din context ĉınd este vorba de vectorul x ∈ Rk

şi ĉınd de numărul real x; ı̂n mod similar vectorul nul 0 va fi notat cu 0.
Un versor este un vector x ∈ Rk cu ‖x‖ = 1.
În cazul n = 3 versorii i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1) formează o

bază ı̂n R3. Orice alt vector x = (x1, x2, x3) ∈ R3 se exprimă ı̂n mod unic ı̂n
funcţie de aceşti versori: x = x1 · i + x2 · j + x3 · k.

În Rk versorii e1 = (1, 0, 0, ..., 0, 0), e2 = (0, 1, 0, ..., 0, 0), ...,
ek = (0, 0, 0, ..., 0, 1) formează o bază; orice vector x = (x1, ..., xk) ∈ Rk se
scrie ı̂n mod unic ı̂n funcţie de versorii bazei: x = x1 · e1 + ... + xk · ek.
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Ecuaţia dreptei şi ecuaţia planului

Inspiraţi de propoziţia 1.1.11, extindem ı̂n Rk noţiunile de segment, semi-
dreaptă şi dreaptă.

1.1.12 Definiţie. Fie x0 = (x0
1, ..., x

0
k), y

0 = (y0
1, ..., y

0
k) ∈ Rk; numim:

1. segment av̂ınd drept capete punctele x0 şi y0 mulţimea
[x0, y0] = {x0 + t(y0 − x0) : t ∈ [0, 1]}.
2. semidreaptă cu originea ı̂n punctul x0 şi care trece prin y0 mulţimea
[x0, y0) = {x0 + t(y0 − x0) : t ≥ 0}.
3. dreaptă care trece prin punctele x0 şi y0 mulţimea
(x0, y0) = {x0 + t(y0 − x0) : t ∈ R}.
Ecuaţia x = x0 + t(y0 − x0), t ∈ R se numeşte ecuaţia vectorială a dreptei

(x0, y0); ecuaţiile scalare sau parametrice ale acestei drepte ŝınt:
x1 = x0

1 + t(y0
1 − x0

1)
x2 = x0

2 + t(y0
2 − x0

2)
.......
xk = x0

k + t(y0
k − x0

k)

, t ∈ R.

Dacă se elimină parametru t, ecuaţia dreptei se mai poate scrie:
x1 − x0

1

y1
1 − y0

1

=
x2 − x0

2

y1
2 − y0

2

= ... =
xk − x0

k

y1
k − y0

k

. Se constată imediat că, ı̂n cazul

particular n = 2, se obţine ecuaţia plană a dreptei ce trece prin două puncte,
ecuaţie cunoscută din geometria analitică plană.
Din cele de mai sus rezultă că ecuaţia unei drepte care trece prin x0 şi este
paralelă cu versorul u0 (dreaptă ce trece deci prin x0 şi prin x0 + u0) va fi

x = x0 + tu0, t ∈ R

În cazul particular n = 3 vom nota cu α1, α2, α3 unghiurile făcute de versorul
u0 cu axele Ox1, Ox2 şi respectiv Ox3; atunci u0 = (cos α1, cos α2, cos α3) şi
astfel obţinem ecuaţia normala a dreptei:

x1 − x0
1

cos α1

=
x2 − x0

2

cos α2

=
x3 − x0

3

cos α3

.

1.1.13 Propoziţie. Fie x, y, z ∈ R3 puncte necoliniare şi (x, y, z) planul
care trece prin cele trei puncte; atunci:

(x, y, z) = {tx + sy + rz : t, s, r ∈ R, t + s + r = 1}.
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Demonstraţie.

�
1q

q
x

v u

z w

y

-

Din figura de mai sus observăm că u ∈ (x, y, z) ⇐⇒ ∃ v ∈ (x, y),∃ w ∈ (x, z)
a.̂ı. −→xu = −→xv +−→xw sau u− x = v − x + w − x ⇔ u = v + w − x. Fie t, s ∈ R
a.̂ı. v = x + t(y − x), w = x + s(z − x). Atunci u = ty − tx + x + sz − sx =
(1− t− s)x + tx + sz.

�

1.1.14 Definiţie. Fie x, y, z ∈ R3 trei puncte necoliniare; numim plan
care trece prin x, y, z mulţimea Π = {u = tx + sy + (1 − s − t)z : s, t ∈ R}.
Ecuaţia acestui plan este u = tx + sy + (1− t− s)z, t, s ∈ R .

1.1.15 Exemplu.
Fie punctele necoliniare A = (a, 0, 0), B = (0, b, 0), C = (0, 0, c) ∈ R3; ecuaţia
planului care trece prin A, B şi C este u = tA + sB + (1 − t − s)C =
(ta, 0, 0)+(0, sb, 0)+(0, 0, (1− t−s)c) = (ta, sb, (1− t−s)c). Dacă notăm cu

(x, y, z) coordonatele lui u obţinem


x = ta
y = sb
z = (1− t− s)c

, t, s ∈ R. Elimin̂ınd

parametrii t şi s din ecuaţiile de mai sus vom ajunge la ecuaţia planului prin
tăieturi:

x

a
+

y

b
+

z

c
− 1 = 0.

Produs scalar

Fie x = (x1, x2), y = (y1, y2) ∈ R2 şi fie θ unghiul x̂0y; definim atunci
(x, y) = ‖x‖ · ‖y‖ · cos θ. Observăm că dreapta care trece prin punctele 0
şi x este perpendiculară pe dreapta ce trece prin 0 şi y dacă şi numai dacă
(x, y) = 0.

Aşa cum putem constata din figura de mai jos, cos θ = cos (θ2 − θ1) =

cos θ2 cos θ1 + sin θ2 sin θ1 =
y1

‖y‖
· x1

‖x‖
+

y2

‖y‖
· x1

‖x‖
=

x1y1 + x2y2

‖x‖ · ‖y‖
.
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6

-

θ

y
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θ1
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Rezultă deci că (x, y) = x1y1 + x2y2; acesta ne permite să extindem acest
“produs” la Rk.

1.1.16 Definiţie. Fie x = (x1, ..., xk), y = (y1, ..., yk) ∈ Rk; numim produs
scalar (sau produs interior) al vectorilor x şi y numărul real:

(x, y) =
k∑

i=1

xiyi.

Vom spune că vectorii x şi y ŝınt perpendiculari dacă (x, y) = 0; vom nota
această situaţie cu x ⊥ y.

1.1.17 Observaţie. Deşi notaţia pentru produsul scalar a vectorilor x şi y
coincide cu aceea pentru dreapta care trece prin punctele x şi y vom putea
să distingem din context ı̂n ce sens este folosită.

1.1.18 Propoziţie. Produsul scalar pe Rk are următoarele proprietăţi:

(x, y) = (y, x),∀ x, y ∈ Rk,

(tx, y) = t(x, y),∀ x, y ∈ Rk,∀t ∈ R,
(x + y, z) = (x, z) + (y, z),∀ x, y, z ∈ Rk,

(x, x) = ‖x‖2,∀ x ∈ Rk,

|(x, y)| ≤ ‖x‖ · ‖y‖ ≤ 1
2
(‖x‖2 + ‖y‖2),∀ x, y ∈ Rk

Demonstraţie. Vom demonstra numai ultima inegalitate.
∀ x, y ∈ Rk, (x−ty, x−ty) ≥ 0 sau (y, y)·t2−2(x, y)·t+(x, x) ≥ 0,∀ t ∈ R;

deci discriminantul acestui trinom de gradul doi trebuie să fie negativ, de
unde: |(x, y)| ≤ ‖x‖ · ‖y‖.

�
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Elemente de topologie ı̂n Rk

1.1 Structura de spaţiu vectorial pe Rk

1.1.19 Definiţie. Din propoziţia precedentă remarcăm că

−1 ≤ (x, y)

‖x‖ · ‖y‖
≤ 1,∀ x, y ∈ Rk, x 6= 0 6= y.

Rezultă atunci că există un unghi unic θ ∈ [0, π] a.̂ı.

cos θ =
(x, y)

‖x‖ · ‖y‖
.

Vom spune că θ este unghiul dintre vectorii x şi y (unghiul x̂0y); regăsim
astfel formula din cazul k = 2:

(x, y) = ‖x‖ · ‖y‖ · cos θ, ∀ x, y ∈ Rk.

1.2 Relaţia de ordine pe Rk

1.2.1 Definiţie. Fie x = (x1, ..., xk), y = (y1, ..., yk) ∈ Rk; spunem că x
este mai mic deĉıt y şi notăm cu x ≤ y situaţia ı̂n care x1 ≤ y1, ..., xk ≤ yk.

1.2.2 Observaţie. Relaţia definită este reflexivă, adică:
1. x ≤ x, ∀x ∈ Rk,
antisimetrică, deci:

11
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2. x ≤ y şi y ≤ x antrenează x = y
şi tranzitivă, deci:
3. x ≤ y şi y ≤ z antrenează x ≤ z.
Aceste proprietăţi caracterizează relaţile de ordine; deci “≤” este o relaţie
de ordine pe Rk. Acestă ordine nu este totală; de
exemplu (0, 1) nu este comparabil cu (1, 0) ı̂n R2.

1.2.3 Definiţie. O mulţime A ⊆ Rk este mărginită superior ı̂n Rk dacă
există un majorant pentru A, deci dacă există un element x0 ∈ Rk a.̂ı.
x ≤ x0,∀ x ∈ A.

O mulţime A ⊆ Rk este mărginită inferior ı̂n Rk dacă există un mi-
norant pentru A, deci dacă există un element x0 ∈ Rk a.̂ı. x ≥ x0,∀ x ∈ A.

O mulţime este mărginită dacă este mărginită superior şi mărginită in-
ferior.

În figura de mai jos se ilustrează o astfel de situaţie ı̂n R2

-

u x0

A

uy0

6

x0 este un majorant iar y0 un minorant pentru mulţimea A.

1.2.4 Teoremă. Orice mulţime nevidă şi mărginită superior (mărginită
inferior) din Rk admite margine superioară (margine inferioară).

Demonstraţie. Presupunem că x0 = (x0
1, ..., x

0
k) ∈ R

k este un majorant
pentru mulţimea nevidă A. Fie A1 = {a ∈ R : ∃ x = (a, x2, ..., xk) ∈ A}; A1

este o mulţime nevidă şi mărginită superior de x0
1 ı̂n R. Rezultă că există x̄1 =

sup A1 ∈ R. Raţionăm similar pentru celelalte coordonate şi găsim x̄2, ..., x̄k
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margini superioare pentru A2, ..., Ak, respectiv. Fie x̄ = (x̄1, ..., x̄k) ∈ Rk.
Rezultă imediat că x̄ este marginea superioară a mulţimii A. Similar se
arată că dacă A este mărginită inferior ∃ ȳ = inf A.

�

1.2.5 Observaţie. Trebuie remarcat că, spre deosebire de R, ı̂n Rk, k ≥ 2,
6

A

nu ne putem apropia oriĉıt de marginea superi-

-
6

x̄
r+

În figura alăturată ilustrăm o astfel de situaţie.

oară a unei mulţimi cu puncte din mulţime.

x̄ = sup A ı̂nsă, ∀ x ∈ A, d(x, x̄) = ‖x− x̄‖ ≥ r.

1.2.6 Definiţie. Fie x0 ∈ Rk şi r ∈ R, r > 0; mulţimea

S(x0, r) = {x ∈ Rk : d(x, x0) = ‖x− x0‖ < r}

se numeşte sferă deschisă cu centrul ı̂n x0 şi de rază r iar mulţimea

T (x0, r) = {x ∈ Rk : d(x, x0) = ‖x− x0‖ ≤ r}

se numeşte sferă ı̂nchisă cu centrul ı̂n x0 şi de rază r.

1.2.7 Observaţie. În cazul particular k = 3 sferele deschise ŝınt exact
sferele geometrice pline fără “coajă”, iar sferele ı̂nchise ŝınt sferele pline din
spaţiu.

Pentru k = 2, sferele deschise (̂ınchise) ŝınt discurile geometrice deschise
(̂ınchise); ı̂n cazul k = 1 sferele deschise ŝınt intervale deschise iar sferele
ı̂nchise ŝınt intervale ı̂nchise (centrul este ı̂n mijlocul intervalului iar raza
este egală cu jumătate din lungimea acestuia).

1.2.8 Propoziţie. O mulţime A ⊆ Rk este mărginită dacă şi numai dacă
există un număr r > 0 a.̂ı. A ⊆ T (0, r) (sau ‖x‖ ≤ r,∀ x ∈ A).



14 Capitolul 1. Elemente de topologie ı̂n Rk

Demonstraţie. (=⇒): Presupunem că A este mărginită; fie y0 = (y0
1, ..., y

0
k)

un minorant şi x0 = (x0
1, ..., x

0
k) un majorant pentru A.

Rezultă că, ∀ x = (x1, ..., xk) ∈ A,

y0
i ≤ xi ≤ x0

i ,∀ i = 1, ..., k

şi deci că

|xi| ≤ max{|x0
i |, |y0

i |} ≤ max{|x0
i |, |y0

i |, i = 1, ..., k}.

Atunci
∑k

i=1 x2
i ≤ k ·max{(x0

i )
2, (y0

i )
2 : i = 1, ..., k}, de unde

‖x‖ ≤
√

k ·max{|x0
i |, |y0

i | : i = 1, ..., k}.

Putem deci alege r =
√

k ·max{|x0
i |, |y0

i | : i = 1, ..., k}.
(⇐=): Presupunem că există un număr r > 0 a.̂ı. A ⊆ T (0, r) şi notăm

x0 = (r, ..., r), y0 = (−r, ...,−r). Este evident că y0 este un minorant iar x0

este un majorant pentru mulţimea A.
�

1.2.9 Observaţie. Fie x, y ∈ Rk, x ≤ y; atunci [x, y]  {z : x ≤ z ≤ y}.
Ilustrăm acest fapt ı̂n R2:

-

r

qprx

y

{z ∈ R2 : x ≤ z ≤ y}

6

[x, y] = {z ∈ R2 : d(x, z) + d(z, y) = d(x, y)}�

i

1.3 Structura topologică uzuală pe Rk

1.3.1 Definiţie. Fie x0 ∈ Rk; o mulţime V ⊆ Rk se numeşte vecinătate
a punctului x0 dacă există un număr r > 0 a.̂ı. S(x0, r) ⊆ V .

Vom nota cu V(x0) mulţimea tuturor vecinătăţilor lui x0; V(x0) este o
submulţime a mulţimii P(Rk) a tuturor părţilor lui Rk. Evident că ∀ x ∈
Rk,∀ r > 0, S(x, r) ∈ V(x).
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În figura de mai jos V ⊆ R3 este un con plin cu v̂ırful ı̂n y0 iar x0 este
un punct ı̂n interiorul lui V ; după cum se poate constata din figură, V este
vecinătate pentru x0 dar nu este vecinătate pentru y0.

+

6

x1

x2

0

x3

-

q��
��

q

s

i

V

S(x0, r)

y0

j

M

x0

Teorema următoare pune ı̂n evidenţă ĉıteva proprietăţi importante ale
mulţimii vecinătăţilor unui punct.

1.3.2 Teoremă. Fie x0 ∈ Rk; ∀ x ∈ Rk fie V(x) mulţimea vecinătăţilor lui
x. Atunci ŝınt ı̂ndeplinite următoarele proprietăţi:

(V1) V ∈ V(x0), V ⊆ W =⇒ W ∈ V(x0),
(V2) V1, V2 ∈ V(x0) =⇒ V1 ∩ V2 ∈ V(x0),
(V3) x0 ∈ V, ∀ V ∈ V(x0),
(V4) ∀ V ∈ V(x0),∃ W ∈ V(x0) a.̂ı. V ∈ V(x),∀ x ∈ W,
(V5) ∀ y0 6= x0,∃ V ∈ V(x0),∃ W ∈ V(y0) a.̂ı. V ∩W = ∅.

Demonstraţie. Vom schiţa demonstraţia doar pentru ultimele două pro-
prietăţi.

(V4). Oricare ar fi V ∈ V(x0) există r > 0 aşa fel ı̂nĉıt S(x0, r) ⊆ V ;
atunci W = S(x0, r) ∈ V(x0) şi ∀ x ∈ W, d(x, x0) = ‖x − x0‖ < r. Fie
r1 = r−‖x−x0‖ > 0;∀ y ∈ S(x, r1), d(y, x0) = ‖y−x0‖ ≤ ‖y−x‖+‖x−x0‖ <
r1 + ‖x− x0‖ = r deci y ∈ S(x0, r). Rezultă că S(x, r1) ⊆ S(x0, r) ⊆ V ceea
ce antrenează V ∈ V(x).

(V5). Fie y0 6= x0; atunci r =
1

2
· d(x0, y0) =

1

2
· ‖x0 − y0‖ > 0. S(x0, r) ∈

V(x0), S(y0, r) ∈ V(y0) şi intersecţia celor două vecinătăţi este vidă.

Intr-adevăr dacă ar exista un element comun x atunci 2 · r = d(x0, y0) ≤
d(x0, x) + d(x, y0) < r + r = 2 · r ceea ce este absurd.

�
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În practică este mai dificil de operat cu noţiunea generală de vecinătate;
unele vecinătăţi, cum ar fi de exemplu sferele, oferă simplificări ale raţiona-
mentelor.

1.3.3 Definiţie. Fie x0 ∈ Rk; o familie de mulţimi V0(x
0) ⊆ P(Rk) se

numeşte sistem fundamental de vecinătăţi dacă:
1). V0(x

0) ⊆ V(x0);
2). ∀ V ∈ V(x0),∃ W ∈ V0(x

0) a.̂ı. W ⊆ V .

1.3.4 Exemple. Următoarele familii de mulţimi oferă exemple de sisteme
fundamentale numărabile de vecinătăţi pentru un punct x = (x1, ..., xk) ∈ Rk:

a).

{
S

(
x,

1

n

)
: n ∈ N∗

}
.

b).

{
k∏

i=1

(
xi −

1

n
, xi +

1

n

)
: n ∈ N∗

}
.

Av̂ınd la dispoziţie noţiunea de vecinătate putem trece la studiul convergenţei
şirurilor ı̂n Rk.

1.3.5 Definiţie. O funcţie f : N → Rk se numeşte şir de vectori ı̂n
Rk; vom nota, ∀ n ∈ N, f(n) = xn = (xn

1 , ..., x
n
k). Şirurile de numere

reale (xn
1 )n∈N, ..., (xn

k)n∈N se vor numi şirurile de coordonate asociate şirului
(xn)n∈N.

Ca şi ı̂n cazul real, vom folosi pentru şirul f notaţia mai sugestivă f ≡
(xn)n∈N sau pur şi simplu (xn). Pentru a indica mulţimea A ⊆ Rk ca mulţime
de valori pentru şirul f vom nota (abuziv !) (xn) ⊆ A.

Fie f : N → Rk un şir; şirul g : N → Rk se numeşte subşir al şirului
f dacă există o funcţie strict crescătoare ϕ : N → N a.̂ı. g = f ◦ ϕ. Dacă
notăm ϕ(n) = ln,∀n ∈ N atunci un subşir al şirului f este g ≡ (xln)n∈N unde
(ln)n∈N este un şir strict crescător de numere naturale.

1.3.6 Lemă. Pentru orice mulţime infinită de numere naturale N ⊆ N
există o unică bijecţie strict crescătoare ϕ : N→ N .

Demonstraţie. Fie N ⊆ N o mulţime infinită de numere naturale; deoarece
N este nevidă şi relaţia de ordine pe N este o relaţie de bună ordonare, există
un cel mai mic element l0 al mulţimii N ; mulţimea infinită N\{l0} este nevidă
şi deci are un prim element l1. Evident l0 < l1. Continuăm inductiv acest
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procedeu; presupunem că am determinat elementele l0 < l1 < l2 < ... < ln ale
mulţimii N , unde ln = min(N \ {l0, ..., ln−1}). Mulţimea N \ {l0, ..., ln} este
nevidă (este o mulţime infinită) şi deci are un prim element ln+1; evident ln <
ln+1. Am definit astfel mulţimea {l0, ..., ln, ...} ⊆ N cu l0 < l1 < ... < ln < ....
Prin inducţie se poate arăta că ln ≥ n, ∀ n ∈ N şi deci, ∀n ∈ N, n ∈ {l0, ..., ln}
ceea ce ı̂nseamnă că N = {l0, ..., ln, ...}. Astfel am introdus o funcţie strict
crescătoare şi surjectivă ϕ : N → N, ϕ(n) = ln,∀n ∈ N. Dacă ϕ1 : N → N
este o altă bijecţie strict crescătoare, ϕ1(0) va fi cel mai mic element al
mulţimii N şi astfel va coincide cu l0. ϕ1(1) este cel mai mic element al
mulţimii N \ {ϕ1(0)} = N \ {l0} şi astfel coincide cu l1 ş.a.m.d. În general
demonstrăm că ϕ1(n) = ln,∀n ∈ N ceea ce arată că ϕ1 = ϕ.

�

1.3.7 Observaţie. Lema precedentă afirmă de fapt că orice submulţime in-
finită a lui N dotată cu ordinea naturală este “asemenea” mulţimii numerelor
naturale (are acelaşi număr ordinal). Vom considera de acum fiecare mulţime
infinită de numere naturale ordonată strict crescător.

1.3.8 Propoziţie. Orice subşir al şirului f este restricţia funcţiei f la o
submulţime infinită N ⊆ N.

Demonstraţie. Dacă g este subşir al şirului f ≡ (xn)n∈N, g = f ◦ ϕ,
unde ϕ : N → N este o funcţie strict crescătoare; atunci g ≡ (xln)n∈N unde
ln = ϕ(n),∀n ∈ N. Să observăm că mulţimea N = ϕ(N) = {ln : n ∈ N} este
o mulţime infinită de numere naturale şi că g ≡ (xn)n∈N = f |

N
.

Invers, fie N ⊆ N a.̂ı. este o mulţime infinită de numere naturale şi fie
ϕ : N → N unica bijecţie strict crescătoare a cărei existenţă este asigurată
de lema de mai sus; dacă g = f |

N
, atunci g ≡ f ◦ ϕ este un subşir al şirului

f .
�

1.3.9 Observaţie. În cele ce urmează vom folosi noţiunea de subşir al unui
şir (xn)n∈N, după cum va fi mai convenabil, ı̂n una din cele două accepţiuni:

1. (xln)n∈N, unde (ln) este un şir strict crescător de numere naturale sau
2. (xn)n∈N unde N este o submulţime infinită de numere naturale.
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1.3 Structura topologică uzuală pe Rk

1.3.10 Definiţie. Fie (xn)n ⊆ Rk un şir de vectori şi fie x ∈ Rk; vom spune
că şirul (xn)n converge la x dacă oricare ar fi o vecinătate V ∈ V(x) există
un rang n0 ∈ N aşa fel ı̂nĉıt oricare ar fi n ≥ n0, x

n ∈ V ; vom nota aceasta
prin xn → x sau, ĉınd vrem să marcăm spaţiul ı̂n care are loc convergenţa,
xn −→

Rk
x.

Şirul (xn) ⊆ Rk este convergent dacă există x ∈ Rk a.̂ı. xn → x;
vectorul x se va numi limita şirului convergent (xn). Un şir care nu este
convergent se numeşte divergent.

A stabili natura unui şir ı̂nseamnă a stabili dacă el este convergent sau
dacă este divergent.

1.3.11 Observaţie. Formal, definiţia coincide cu aceea de la şiruri de nu-
mere reale. De altfel, ı̂n orice spaţiu abstract ı̂n care, printr-un procedeu
oarecare, am definit noţiunea de vecinătate putem defini similar noţiunea de
şir convergent.

1.3.12 Propoziţie. Un şir (xn) ⊆ Rk este convergent la x dacă şi numai
dacă şirul de numere reale (‖xn − x‖)n∈N este convergent la zero.

Demonstraţie. (=⇒) Presupunem că xn → x şi fie ε > 0 arbitrar; atunci
sfera S(x, ε) ∈ V(x) şi deci există n0 ∈ N a.̂ı. ∀ n ≥ n0, x

n ∈ S(x, ε) ceea ce
este echivalent cu ‖xn − x‖ < ε. Deci ‖xn − x‖ → 0.

18
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(⇐=) Presupunem că ‖xn − x‖ → 0 şi fie V o vecinătate arbitrară a lui
x. Din definiţia vecinătăţilor, există r > 0 a.̂ı. S(x, r) ⊆ V şi astfel există
n0 ∈ N a.̂ı. ‖xn − x‖ < r, ∀ n ≥ n0. De aici rezultă că pentru orice n ≥ n0,
xn ∈ S(x, r) ⊆ V .

�

Convergenţa unui şir de vectori din Rk se reduce la convergenţa şirurilor
de coordonate asociate lui.

1.3.13 Teoremă. Fie şirul (xn)n∈N ⊆ Rk, xn = (xn
1 , ..., x

n
k),∀ n ∈ N şi fie

x = (x1, ..., xk) ∈ Rk;

xn −→
Rk

x ⇐⇒ xn
i −→R xi,∀ i ∈ {1, ..., k}.

Demonstraţie. Demonstraţia teoremei rezultă din inegalităţile:

(∗) |xn
i − xi| ≤ ‖xn − x‖ ≤

√
k ·max{|xn

i − xi| : i = 1, ..., k}.

Într-adevăr, dacă presupunem că xn −→
Rk

x atunci ‖xn−x‖ → 0 şi, din prima

inegalitate a relaţiei (∗), xn
i → xi,∀ i = 1, ..., k.

Reciproc, dacă ∀ i ∈ {1, ..., k}, xn
i −→R xi, atunci ∀ ε > 0,∃ ni ∈ N a.̂ı.

(i) |xn
i − xi| <

ε√
k
,∀n ≥ ni.

Fie n0 = max{ni : i = 1, ..., k}; ∀n ≥ n0 şi ∀ i = 1, ..., k, n ≥ ni şi atunci, din
relaţia (i),

|xn
i − xi| <

ε√
k

de unde √
k ·max{|xn

i − xi| : i = 1, ..., k} < ε.

Utiliẑınd inegalitatea din dreapta relaţiei (∗) rezultă că ‖xn− x‖ → 0 şi deci
xn → x.

�

Propoziţia următoare pune ı̂n evidenţă ĉıteva proprietăţi generale ale
şirurilor convergente; vom face observaţia că acestea ŝınt asemănătoare pro-
prietăţilor generale ale convergenţei şirurilor de numere reale.

1.3.14 Propoziţie.
1). Limita unui şir convergent este unică.
2). Orice şir convergent este mărginit.
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3). xn −→
Rk

x =⇒ ‖xn‖ −→
R
‖x‖.

4). Dacă ı̂ntr-un şir schimbăm ordinea termenilor natura sa nu se schimbă
iar ı̂n cazul ı̂n care este convergent limita sa rămı̂ne aceeaşi.

5). Dacă unui şir ı̂i adăugăm sau ı̂i suprimăm un număr finit de termeni
natura şirului nu se schimbă iar ı̂n caz de convergenţă nici limita.

6). Orice subşir al unui şir convergent converge la aceeaşi limită.

Demonstraţie. Deoarece convergenţa şirurilor ı̂n Rk este echivalentă cu
convergenţa şirurilor de coordonate, demonstraţia proprietăţilor 1), 4), 5) şi
6) se bazează pe proprietăţile similare ale şirurilor de numere reale.

2). Fie (xn) ∈ Rk convergent şi fie x ∈ Rk limita sa; atunci ‖xn−x‖ → 0.
Pentru ε = 1,∃ n1 ∈ N a.̂ı. ‖xn − x‖ < 1,∀ n ≥ n1. Notăm cu

r = max{‖x0‖, ‖x1‖, ..., ‖xn1−1‖, ‖x‖+ 1};

atunci, ∀ n ∈ N, ‖xn‖ ≤ r. Într-adevăr, dacă n < n1, atunci este evidentă
inegalitatea iar dacă n ≥ n1, ‖xn‖ ≤ ‖xn − x‖+ ‖x‖ < 1 + ‖x‖ ≤ r.

Rezultă că {xn : n ∈ N} ⊆ T (0, r) şi deci (xn) este un şir mărginit
(mulţimea termenilor săi este o mulţime mărginită).

3). Presupunem că xn −→
Rk

x; atunci, cum

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖,∀ n ∈ N,

rezultă că ‖xn‖ −→
R
‖x‖.

�

Operaţii cu şiruri convergente

1.3.15 Propoziţie. Fie (xn), (yn) ⊆ Rk, x, y ∈ Rk, (tn) ⊆ R şi t ∈ R;
atunci:

1). xn → x
yn → y

}
=⇒ xn + yn → x + y.

2). xn → x
tn → t

}
=⇒ tn · xn → t · x.

3). xn → x
yn → y

}
=⇒ (xn, yn) → (x, y).
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Demonstraţie.
1). Deoarece xn → x şi yn → y, ‖xn − x‖ → 0 şi ‖yn − y‖ → 0; concluzia

este o consecinţă a inegalităţii:

‖(xn + yn)− (x + y)‖ ≤ ‖xn − x‖+ ‖yn − y‖.

2). ‖tn·xn−t·x‖ ≤ ‖tn·xn−tn·x‖+‖tn·x−t·x‖ = |tn|·‖xn−x‖+|tn−t|·‖x‖.
Deoarece (tn) este convergent la t (deci este şi mărginit !) iar (xn) este
convergent la x, din inegalitatea de mai sus rezultă că tn · xn → t · x.

3). |(xn, yn)− (x, y)| ≤ |(xn − x, yn)| + |(x, yn − y)| ≤ ‖xn − x‖ · ‖yn‖ +
‖x‖ · ‖yn − y‖. Deoarece (xn) este convergent la x şi (yn) este convergent la
y (deci şi mărginit !), rezultă din relaţia de mai sus că (xn, yn) → (x, y).

�

Teoreme fundamentale

Rezultatele următoare reprezintă instrumente fundamentale ale teoriei con-
vergenţei ı̂n Rk; formal ele ŝınt identice cu rezultatele similare de pe R.

1.3.16 Teoremă. Orice şir monoton crescător şi mărginit converge la
marginea superioară a mulţimii termenilor săi.

Orice şir monoton descrescător şi mărginit converge la marginea infe-
rioară a mulţimii termenilor săi.

Demonstraţie. Fie (xn) ⊆ Rk un şir crescător şi mărginit, unde ∀ n ∈
N, xn = (xn

1 , ..., x
n
k). Ţin̂ınd cont de definiţia relaţiei de ordine rezultă că

∀ n ∈ N,∀ i ∈ {1, ..., k}, xn
i ≤ xn+1

i . În plus (xn) fiind şi mărginit, există
x = (x1, ..., xk) = sup{xn : n ∈ N}. Aşa cum a rezultat din demonstraţia
teoremei 1.2.4, x1 = sup{xn

1 : n ∈ N}, ..., xk = sup{xn
k : n ∈ N}. Rezultă

atunci din teorema de convergenţă a şirurilor monotone de numere reale că
x1 = limn xn

1 , ..., xk = limn xn
k şi astfel, utiliẑınd teorema 1.3.13, xn → x.

Pentru şiruri descrescătoare demonstraţia este asemănătoare.
�

1.3.17 Corolar. Orice şir monoton şi mărginit ı̂n Rk este convergent.

1.3.18 Teoremă (lema lui Cesàro). Orice şir mărginit ı̂n Rk are subşiruri
convergente.

Demonstraţie. Vom face demonstraţia ı̂n cazul particular k = 2. Fie
(xn) un şir mărginit din R2, xn = (xn

1 , x
n
2 ), ∀ n ∈ N şi fie x0 = (x0

1, x
0
2) un
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minorant iar y0 = (y0
1, y

0
2) un majorant al mulţimii termenilor şirului; atunci,

∀ n ∈ N, rezultă x0
1 ≤ xn

1 ≤ y0
1 şi x0

2 ≤ xn
2 ≤ y0

2.
Şirul (xn

1 )n∈N fiind mărginit ı̂n R, varianta scalară a lemei lui Cesàro
ne asigură existenţa unei mulţimi infinite N1 ⊆ N şi a unui punct x1 ∈
R a.̂ı. (xn

1 )n∈N1 → x1. (xn
2 )n∈N1 este subşir al şirului (xn

2 )n∈N; fiind la
r̂ındul său mărginit, există o mulţime infinită N2 ⊆ N1 şi un punct x2 ∈ R
a.̂ı. (xn

2 )n∈N2 → x2. Şirul (xn
1 )n∈N2 este subşir al şirului (xn

1 )n∈N1 şi deci
(xn

1 )n∈N2 → x1. Rezultă atunci că şirul (xn)n∈N2 este un subşir al şirului
(xn)n∈N convergent la x = (x1, x2).

În cazul general demonstraţia este similară.mi Fie (xn) un şir mărginit din Rk, xn = (xn
1 , ..., x

n
k), ∀ n ∈ N şi fie x0 =

(x0
1, ..., x

0
k) un minorant iar y0 = (y0

1, ..., y
0
k) un majorant al mulţimii terme-

nilor şirului; ∀ n ∈ N şi ∀ i ∈ {1, ..., k} rezultă x0
i ≤ xn

i ≤ y0
i .

Şirul (xn
1 )n∈N fiind mărginit ı̂n R, varianta scalară a lemei lui Cesàro

ne asigură existenţa unei mulţimi infinite N1 ⊆ N şi a unui punct x1 ∈ R
a.̂ı. (xn

1 )n∈N1 → x1. Subşirul (xn
2 )n∈N1 al şirului (xn

2 )n∈N fiind la r̂ındul
său mărginit, există o mulţime infinită N2 ⊆ N1 şi un punct x2 ∈ R a.̂ı.
(xn

2 )n∈N2 → x2. În acelaşi mod obţinem mulţimile infinite N2 ⊇ N3 ⊇
... ⊇ Nk şi punctele x3, ..., xk ∈ R a.̂ı. (xn

3 )n∈N3 → x3, ..., (x
n
k)n∈Nk

→ xk.
Şirurile (xn

i )n∈Nk
ŝınt subşiruri ale şirurilor (xn

i )n∈Ni
,∀ i ∈ {1, ..., k} şi deci

(xn
i )n∈Nk

→ xi,∀ i ∈ {1, ..., k}. Rezultă atunci că şirul (xn)n∈Nk
este un

subşir al şirului (xn)n∈N convergent la x = (x1, ..., xk). �

Înainte de a enunţa următoarea teoremă vom defini noţiunea de şir Cauchy.

1.3.19 Definiţie. Un şir (xn)n∈N ⊆ Rk se numeşte şir Cauchy sau şir
fundamental dacă ∀ε > 0,∃n0 ∈ N a.̂ı., ∀n,m ≥ n0, ‖xn − xm‖ < ε.

Rezultă imediat că un şir (xn) este şir Cauchy dacă şi numai dacă ∀ε >
0,∃n0 ∈ N a.̂ı. ∀n ≥ k0,∀p ∈ N, ‖xn+p − xn‖ < ε.

În teorema 1.3.13 am arătat că un şir de vectori este convergent dacă şi
numai dacă ŝınt convergente toate şirurile sale de coordonate. O proprietate
similară are loc şi pentru şirurile Cauchy.

1.3.20 Propoziţie. Fie (xn)n∈N ⊆ Rk, xn = (xn
1 , ..., x

n
k),∀n ∈ N; şirul

(xn) este şir Cauchy ı̂n Rk dacă şi numai dacă şirurile sale de coordonate
(xn

1 )n, ..., (x
n
k)n ŝınt şiruri Cauchy ı̂n R.

Demonstraţie. Demonstraţia este o consecinţă imediată a inegalităţilor:

(∗) |xn
i − xm

i | ≤ ‖xn − xm‖ ≤
√

k ·max{|xn
i − xm

i | : i = 1, ..., k},∀n, m ∈ N.
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Într-adevăr, dacă (xn)n este şir Cauchy, atunci ∀ε > 0,∃n0 ∈ N a.̂ı.,
∀n,m ≥ n0, ‖xn − xm‖ < ε. Din prima inegalitate din (∗) rezultă că, ∀i =
1, ..., k, |xn

i − xm
i | ≤ ‖xn − xm‖ < ε deci şirurile (xn

i )n ŝınt şiruri Cauchy ı̂n
R, ∀i = 1, ..., k.

Reciproc, dacă presupunem că, ∀i = 1, ..., k, şirul (xn
i )n este şir Cauchy

ı̂n R, atunci ∀ε > 0,∃ni ∈ N a.̂ı. ∀n,m ≥ ni, |xn
i − xm

i | <
ε√
k
. Fie atunci

n0 = max{n1, ..., nk}; ∀n, m ≥ n0,
√

k · max{|xn
i − xm

i | : i = 1, ..., k} < ε şi
utiliẑınd inegalitatea a doua din (∗) obţinem ‖xn− xm‖ < ε ceea ce arată că
şirul (xn)n este şir Cauchy ı̂n Rk.

�

1.3.21 Teoremă (teorema lui Cauchy). Un şir (xn) ⊆ Rk este convergent
dacă şi numai dacă este şir Cauchy.

Demonstraţie. Teorema se poate demonstra uşor pe baza propoziţiei
precedente şi a variantei scalare a teoremei fundamentale a lui Cauchy. Astfel
un şir de vectori (xn)n∈N din Rk este convergent dacă şi numai dacă şirurile
sale de coordonate ŝınt convergente (teorema 1.3.13); teorema lui Cauchy
pentru şiruri de numere reale ne asigură atunci că (xn)n converge dacă şi nu-
mai dacă şirurile sale de coordonate ŝınt şiruri Cauchy şi, conform propoziţiei
precedente, aceasta are loc dacă şi numai dacă (xn)n∈N este şir Cauchy.

Putem să prezentăm şi o variantă directă de demonstraţie care urmează
aceeaşi linie cu demonstraţia teoremei lui Cauchy din R (să se compare !).miNecesitatea. Presupunem că şirul (xn) este şir convergent ı̂n Rk; atunci
există un x unic ı̂n Rk a.̂ı. xn → x. Rezultă că ∀ε > 0,∃n0 ∈ N a.̂ı. ∀n ≥
n0, ‖xn−x‖ < 1

2
ε. Atunci ∀n, m ≥ n0, ‖xn−xm‖ ≤ ‖xn−x‖+‖xm−x‖ < ε.

Suficienţa.
1. Fie (xn) ⊆ Rk un şir Cauchy; vom arăta ı̂nt̂ıi că (xn) este mărginit.

Într-adevăr, pentru ε = 1,∃n0 ∈ N a.̂ı. ∀n ≥ n0, ‖xn − xn0‖ < 1. Rezultă
că ‖xn‖ ≤ ‖xn − xn0‖ + ‖xn0‖ < 1 + ‖xn0‖. Atunci, ∀n ∈ N, ‖xn‖ ≤ M =
max{‖x0‖, ‖x1‖, ..., ‖xn0−1‖, 1 + ‖xn0‖} ceea ce arată că (xn) este mărginit.

2. Deoarece (xn) este mărginit putem utiliza lema lui Cesàro pentru a
pune ı̂n evidenţă un subşir (xln)n∈N convergent la un element x ∈ Rk (aici
(ln)n este un şir strict crecscător de numere naturale).

Fie ε > 0 arbitrar.
Deoarece (xn) este şir Cauchy, există n1 ∈ N a.̂ı.

(1) ‖xn − xm‖ <
ε

2
,∀n, m ≥ n1.
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Deoarece (xln)n∈N converge la x, există n2 ∈ N a.̂ı.

(2) ‖xln − x‖ <
ε

2
,∀n ≥ n2.

Fie n3 = max{n1, n2}; ∀n ≥ n3 rezultă ln ≥ n ≥ n1 şi n ≥ n2 şi astfel din
(1) şi (2) obţinem:

‖xn − x‖ ≤ ‖xn − xln‖+ ‖xln − x‖ <
ε

2
+

ε

2
= ε,

ceea ce arată că xn → x.
�

1.3.22 Teoremă (teorema lui Cantor). Fie (xn) ⊆ Rk şi (rn) ∈ (0, +∞);
dacă ŝınt ı̂ndeplinite condiţiile:
1). T (xn, rn) ⊇ T (xn+1, rn+1),∀n ∈ N,
2). limn→∞ rn = 0,
atunci există x ∈ Rk a.̂ı.
∞⋂

n=0

T (xn, rn) = {x}.

Demonstraţie. ∀n, p ∈ N, xn+p ∈ T (xn+p, rn+p) ⊆ T (xn, rn) de unde

(∗) ‖xn+p − xn‖ ≤ rn.

Cum rn → 0, rezultă că (xn) este şir Cauchy. Teorema lui Cauchy ne asigură
existenţa unui element x ∈ Rk a.̂ı. xn → x. Dacă ı̂n relaţia (∗) trecem la
limită pentru p →∞ obţinem, ţin̂ınd cont de proprietatea de continuitate a
normei, ‖x− xn‖ ≤ rn,∀n ∈ N ceea ce arată că x ∈ T (xn, rn),∀n ∈ N.

Dacă
∞⋂

n=0

T (xn, rn) ar mai conţine un element y, atunci ‖xn−y‖ ≤ rn,∀n ∈ N;

rezultă că xn → y. Cum limita unui şir convergent este unică, x = y.
�

1.3.23 Observaţie. Vom prezenta o variantă a acestei teoreme ı̂n care
sferele ı̂nchise vor fi ı̂nlocuite cu mulţimi dintr-o clasă mai largă. Pentru
aceasta avem nevoie să introducem şi alte elemente de topologie ı̂n Rk.

Alte elemente de topologie pe Rk

1.3.24 Definiţie. Fie x ∈ Rk, A ⊆ Rk; spunem că:
1). x este punct aderent pentru mulţimea A dacă V ∩ A 6= ∅,∀V ∈ V(x);
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vom nota cu Ā mulţimea punctelor aderente ale mulţimii A şi o vom numi
aderenţa sau ı̂nchiderea mulţimii A.
2). x este punct de acumulare pentru mulţimea A dacă V ∩ A \ {x} 6=
∅,∀V ∈ V(x); vom nota cu A′ mulţimea punctelor de acumulare ale mulţimii
A şi o vom numi mulţimea derivată a mulţimii A.
3). x este punct interior pentru mulţimea A dacă A ∈ V(x); mulţimea
punctelor interioare mulţimii A se numeşte interiorul mulţimii A şi se
notează cu Å.
4). x este punct izolat al mulţimii A dacă există o vecinătate V ∈ V(x) a.̂ı.
V ∩ A = {x}.
5). Mulţimea A este mulţime ı̂nchisă dacă A = Ā.
6). Mulţimea A este mulţime deschisă dacă A = Å.
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Elemente de topologie ı̂n Rk

1.3 Structura topologică uzuală pe Rk

1.3.25 Observaţie. Noţiunile introduse ı̂n definiţia precedentă cu ajutorul
vecinătăţilor pot fi prezentate echivalent ı̂n limbajul unui sistem fundamental
de vecinătăţi; vom folosi mulţimea sferelor deschise drept astfel de sistem
fundamental de vecinătăţi pentru a obţine următoarele enunţuri echivalente:
1). x ∈ Ā ⇐⇒ ∀ε > 0, S(x, ε) ∩ A 6= ∅.
2). x ∈ A′ ⇐⇒ ∀ε > 0, S(x, ε) ∩ A \ {x} 6= ∅.
3). x ∈ Å ⇐⇒ ∃ε > 0 a.̂ı. S(x, ε) ⊆ A.
4). x este punct izolat pentru A dacă ∃ε > 0 a.̂ı. S(x, ε) ∩ A = {x}.

Ţin̂ınd cont de faptul că fiecare punct din Rk admite un sistem fundamen-
tal de vecinătăţi numărabil, putem caracteriza principalele noţiuni topologice
introduse prin definiţia 1.3.23 cu ajutorul şirurilor.

1.3.26 Teoremă. Fie x ∈ Rk, A ⊆ Rk; atunci:
1). x este punct aderent pentru A dacă şi numai dacă există un şir (xn) ⊆ A
a.̂ı. xn → x.
2). x este punct de acumulare pentru A dacă şi numai dacă există un şir
(xn) ⊆ A \ {x} a.̂ı. xn → x.
3). A este mulţime ı̂nchisă dacă şi numai dacă oricare ar fi un şir convergent
(xn) ⊆ A, limn xn ∈ A.

Demonstraţie. 1). Fie x ∈ Ā; ∀n ∈ N∗, S(x, 1
n
) ∈ V(x) şi deci ∃xn ∈

26
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S(x, 1
n
)∩A. Atunci (xn) este un şir de puncte din A şi ‖xn−x‖ < 1

n
,∀n ∈ N∗,

de unde xn → x.
Reciproc, dacă există un şir (xn) ⊆ A convergent la x, atunci, ∀V ∈

V(x),∃n0 ∈ N a.̂ı., ∀n ≥ n0, x
n ∈ V . În particular, xn0 ∈ V ∩ A de unde

V ∩ A 6= ∅. Rezultă că x ∈ Ā.
2). Caracterizarea este evidentă dacă ţinem cont de punctul 3). al

propoziţiei 1.3.25.
3). Fie A o mulţime ı̂nchisă, deci A = Ā, şi fie (xn) ⊆ A un şir convergent

la x; din punctul 1). x ∈ Ā = A. Reciproc, presupunem că orice şir conver-
gent din A are limita ı̂n A. Ştim că A ⊆ Ā (vezi propoziţia 1.3.26 punctul
1).); ∀x ∈ Ā,∃(xn) ⊆ A a.̂ı. xn → x (punctul 1).) şi astfel x ∈ A. Rezultă
că A = Ā deci A este mulţime ı̂nchisă.

�

1.3.27 Exemple.
1). Sferele ı̂nchise ŝınt mulţimi ı̂nchise; sferele deschise ŝınt mulţimi deschise.
Într-adevăr, dacă am presupune că există o sferă ı̂nchisă T (x, r) care nu este
mulţime ı̂nchisă ar rezulta că ∃y ∈ T (x, r)\T (x, r); atunci ε = ‖x−y‖−r > 0
şi deci S(y, ε)∩T (x, r) 6= ∅. Fie z un punct din intersecţie; atunci ‖x− y‖ ≤
‖x− z‖+ ‖z − y‖ < r + ε = ‖x− y‖ ceea ce este absurd.
Fie acum S(x, r) o sferă deschisă arbitrară din Rk; să arătăm că este vecină-
tate pentru orice punct al ei. Fie y ∈ S(x, r) şi ε = r − ‖x − y‖ > 0. Vom
demonstra că S(y, ε) ⊆ S(x, r) de unde va rezulta că S(x, r) este vecinătate
pentru y. ∀z ∈ S(y, ε), ‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ < ε + ‖x− y‖ = r ceea
ce arată că z ∈ S(x, r).
2). Fie A = A1 ∪ A2 ∪ {(0, 0)} ⊆ R2 unde A1 = {(x, y) ∈ R2 : y > 1} iar
A2 = {(x, y) :∈ R2 : y ≤ −x2 − 1}. Imaginea mulţimii A este schiţată ı̂n
imaginea de mai jos.

A1

A2

x

6
y

-

�

s
(0, 0)

�
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Atunci Ā = Ā1 ∪ Ā2 ∪ {(0, 0)} unde Ā1 = {(x, y) ∈ R2 : y ≥ 1},
Ā2 = A2 = {(x, y) ∈ R2 : y ≤ −x2−1}, A′ = Ā1∪ Ā2, Å = {(x, y) ∈ R2 : y >
1, sau y < −x2 − 1}; punctul (0, 0) este singurul punct izolat al mulţimii A.
Mulţimea A1 este mulţime deschisă iar mulţimea A2 este mulţime ı̂nchisă.
Mulţimea A nu este nici deschisă nici ı̂nchisă.

Remarcăm aici că dacă o mulţime nu este deschisă nu rezultă că ar fi
ı̂nchisă !!
3). Dreapta ce trece prin punctele x şi y din Rk,

(x, y) = {x + t · (y − x) : t ∈ R}

este o mulţime ı̂nchisă ı̂n Rk care nu are puncte interioare. Pentru a demon-
stra că (x, y) este mulţime ı̂nchisă este suficient să arătăm că orice punct care
nu aparţine dreptei nu este punct aderent pentru aceasta.

Fie z 6∈ (x, y);∀t ∈ R, fie u = x + t · (y − x) ∈ (x, y). Atunci

(∗) ‖z−u‖2 = (z−u, z−u) = (z−x, z−x)−2t·(z−x, y−x)+t2·(y−x, y−x) =

= ‖x− y‖2 · t2 − 2t · (z − x, y − x) + ‖z − x‖2.

Trinomul de gradul doi ı̂n t de mai sus are discriminantul

∆ = 4
[
(z − x, y − x)2 − ‖z − x‖2 · ‖x− y‖2

]
≤ 0

(inegalitatea lui Cauchy |(z−x, y−x)| ≤ ‖z−x‖·‖y−x‖ din propoziţia 1.1.18).
Mai mult, discriminantul ∆ < 0 deoarece (z − x, y − x) = ‖z − x‖ · ‖y − x‖
are loc dacă şi numai dacă există t ∈ R a.̂ı. z − x = t(y − x) ceea ce este
imposibil (z /∈ (x, y)). Atunci din (∗)

‖z − u‖2 ≥ − ∆

4 · ‖x− y‖2
=
‖z − x‖2 · ‖x− y‖2 − (z − x, y − x)2

‖x− y‖2
= r2 > 0.

Din cele de mai sus rezultă că sfera deschisă S(z, r) nu ı̂nt̂ılneşte (x, y) şi deci
z /∈ (x, y).

Segmentul ı̂nchis [x0, y0] = {x0 + t · (y0−x0) : t ∈ [0, 1]} este de asemenea
mulţime ı̂nchisă. Trebuie să menţionăm aici că segmentul deschis ]x0, y0[=
{x0 + t · (y0 − x0) : t ∈]0, 1[} nu este ı̂nsă mulţime deschisă ı̂n cazul k ≥ 2.
Dacă x0 < y0, mulţimea {x ∈ Rk : x0 < x < y0} (paralelipipedul deschis)
este mulţime deschisă.
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4). Mulţimea A = {tx + sy + (1 − t − s)z : t, s ∈ R} din R3 (graficul unui
plan care trece prin punctele x, y, z) este o mulţime ı̂nchisă ı̂n R3 fără puncte
interioare.

Prezentăm mai jos ĉıteva relaţii imediate ı̂ntre noţiunile introduse:

1.3.28 Propoziţie.
1). Å ⊆ A ⊆ Ā, A′ ⊆ Ā, Ā = A ∪ A′.
2). Mulţimea punctelor izolate ale mulţimii A este egală cu Ā \A′ şi deci cu
A \ A′ (un punct aderent pentru A este sau punct de acumulare sau punct
izolat al mulţimii A).
3). x ∈ A′ ⇐⇒ x ∈ A \ {x}.
4). O mulţime A este ı̂nchisă dacă şi numai dacă A′ ⊆ A.
5). O mulţime A este deschisă dacă şi numai dacă A este vecinătate pentru
orice punct al ei.

Demonstraţie. 1). ∀x ∈ Å, A ∈ V(x) şi deci x ∈ A; ∀x ∈ A,∀V ∈ V(x), x ∈
A ∩ V , deci V ∩ A 6= ∅ ceea ce spune că x ∈ Ā.
Am arătat deci că: Å ⊆ A ⊆ Ā.
A′ ⊆ Ā rezultă imediat din definiţia punctelor de acumulare.
Din cele demonstrate p̂ınă acum rezultă că A∪A′ ⊆ Ā. Fie acum un element
arbitrar x ∈ Ā; dacă x ∈ A atunci x ∈ A ∪ A′. Dacă x /∈ A,∀V ∈ V(x),
V ∩A\{x} = V ∩A 6= ∅ (x este punct aderent pentru A). Rezultă că x ∈ A′.
Aceasta demonstrează incluziunea inversă Ā ⊆ A ∪ A′.

2). Fie x un punct izolat al mulţimii A şi fie V o vecinătate a sa a.̂ı.
V ∩A = {x}; atunci x ∈ A ⊆ Ā şi evident că x /∈ A′. Invers, dacă x ∈ Ā \A′

atunci din 1) x ∈ A; cum x /∈ A′ există o vecinătate a sa V a.̂ı. V ∩A\{x} = ∅;
atunci V ∩ A = {x} şi deci x este punct izolat al mulţimii A.

3). Este evidentă.
4). Din 1). Ā = A∪A′; A este ı̂nchisă dacă şi numai dacă A = Ā = A∪A′

ceea ce este echivalent cu A′ ⊆ A.
5). Este o consecinţă imediată a definiţiilor mulţimilor deschise şi a

punctelor interioare.
�

Propoziţia următoare prezintă ĉıteva proprietăţi ale mulţimilor ı̂nchise şi
ale celor deschise.

1.3.29 Propoziţie. Fie A ⊆ Rk; atunci:
1). A este mulţime ı̂nchisă dacă şi numai dacă Rk \A este mulţime deschisă.
2). Ā este mulţime ı̂nchisă (cea mai mică mulţime ı̂nchisă care conţine
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mulţimea A).
3). Å este mulţime deschisă (cea mai mare mulţime deschisă conţinută ı̂n
mulţimea A).

mi Demonstraţie. 1). Presupunem că A este mulţime ı̂nchisă (A =
Ā); pentru a demonstra că Rk \ A este deschisă trebuie să arătăm că Rk \

A =
˚̂

Rk \ A. Incluziunea
˚̂

Rk \ A ⊆ Rk \ A este asigurată de punctul 1). al
propoziţiei 1.3.26. Fie acum x ∈ Rk \ A; rezultă că x /∈ A = Ā. Există
deci o vecinătate V a lui x a.̂ı. V ∩ A = ∅ sau, echivalent, V ⊆ Rk \ A.
Ultima incluziune ne asigură că Rk \ A este vecinătate a punctului x şi deci

că x ∈
˚̂

Rk \ A.
Reciproc, fie Rk\A mulţime deschisă şi x ∈ Ā; dacă presupunem că x /∈ A

atunci x ∈ Rk \ A =
˚̂

Rk \ A şi deci Rk \ A ∈ V(x). Cum x ∈ Ā ar trebui ca
(Rk \A)∩A 6= ∅ ceea ce este absurd. Deci ipoteza x /∈ A este falsă, de unde
rezultă că A = Ā şi deci A este mulţime ı̂nchisă.

2). A arăta că Ā este ı̂nchisă revine la a demonstra că Ā = ¯̄A; din
propoziţia 1.3.26 punctul 1). ştim că Ā ⊆ ¯̄A. Presupunem că incluziunea
inversă nu are loc şi fie atunci x ∈ ¯̄A \ Ā. Deoarece x nu este punct aderent
pentru A, există o vecinătate V a sa a.̂ı. V ∩ A = ∅. Din proprietatea
(V4) a teoremei 1.3.2 există o vecinătate W ∈ V(x) a.̂ı. V ∈ V(y),∀y ∈ W .
Deoarece x ∈ ¯̄A, W ∩ Ā 6= ∅. Fie atunci y ∈ W ∩ Ā. Rezultă că V ∈ V(y) şi,
cum y ∈ Ā, V ∩ A 6= ∅ ceea ce reprezintă o contradicţie.

Fie acum F = F̄ o altă mulţime ı̂nchisă ce conţine A; ∀x ∈ Ā,∃(xn) ⊆
A ⊆ F a.̂ı. xn → x. Caracterizarea mulţimilor ı̂nchise dată ı̂n teorema 1.3.28
punctul 3). ne permite să afirmăm că x = limk xn ∈ F . Deci Ā ⊆ F .

3). Demonstraţia este asemănătoare celei de la punctul precedent; se

arată că Å =
˚̊
A.

�

Putem acum extinde teorema lui Cantor (teorema 1.3.22) de la clasa
sferelor ı̂nchise la aceea a mulţimilor ı̂nchise; să definim ı̂nt̂ıi diametrul unei
mulţimi mărginite.

1.3.30 Definiţie. Fie A ⊆ Rk o mulţime mărginită; după propoziţia 1.2.8
există r > 0 a.̂ı. A ⊆ T (0, r); atunci, ∀x, y ∈ A, d(x, y) = ‖x − y‖ ≤
‖x‖ + ‖y‖ ≤ 2 · r. Deci mulţimea {d(x, y) = ‖x − y‖ : x, y ∈ A} este
mărginită ı̂n R şi deci există

δ(A) = sup{‖x− y‖ : x, y ∈ A} ∈ R+
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Numărul δ(A) se numeşte diametrul mulţimii A.

1.3.31 Teoremă (teorema lui Cantor). Fie (Fn)n∈N un şir de mulţimi
ı̂nchise nevide din Rk; dacă ŝınt ı̂ndeplinite condiţiile:
1). Fn ⊇ Fn+1,∀n ∈ N,
2). limn→∞ δ(Fn) = 0,
atunci există x ∈ Rk a.̂ı.

∞⋂
n=0

Fn = {x}.

miDemonstraţie. Demonstraţia este asemănătoare demonstraţiei teore-
mei 1.3.22. Fie xn ∈ Fn,∀n ∈ N (Fn ŝınt mulţimi nevide). Atunci, ∀n, p ∈
N, xn+p ∈ Fn+p ⊆ Fn de unde ‖xn+p−xn‖ ≤ δ(Fn) → 0. Rezultă că (xn) este
şir Cauchy ı̂n Rk şi deci converge la un x ∈ Rk. Dar, ∀n ∈ N, (xm)m≥n ⊆ Fn

de unde rezultă că x ∈ Fn,∀n ∈ N. Deoarece δ(Fn) → 0, intersecţia acestor
mulţimi nu poate conţine şi alte puncte.

�

Vom introduce acum o noţiune topologică de mare importanţă ı̂n ı̂ntreaga
analiză matematică: noţiunea de mulţime compactă.

1.3.32 Definiţie. O mulţime A ⊆ Rk se numeşte mulţime compactă dacă
pentru orice şir de elemente din A se poate găsi un subşir convergent la un
punct din A.

Înainte de a da exemple de mulţimi compacte vom prezenta o caracterizare
importantă a acestor mulţimi ı̂n Rk.

1.3.33 Teoremă. O submulţime din Rk este compactă dacă şi numai dacă
este mărginită şi ı̂nchisă.

Demonstraţie. Fie A ⊆ Rk o mulţime compactă; să presupunem ı̂nt̂ıi
că A nu este mărginită. Rezultă din propoziţia 1.2.8 că nu există nici-o
sferă ı̂nchisă centrată ı̂n origine care să conţină mulţimea A. Deci ∀n ∈
N∗,∃xn ∈ A \T (0, n). Atunci şirul (xn) ⊆ A şi, cum A este compactă, există
(xln)n∈N un subşir al său convergent la un punct din A. Pe de altă parte,
∀n ∈ N∗, ‖xln‖ > ln ≥ n ceea ce conduce la concluzia absurdă că acest subşir
este nemărginit. Deci ipoteza că A este nemărginită este falsă.

Să arătăm că A este ı̂nchisă. Vom folosi punctul 3). al teoremei 1.3.28.
Fie deci (xn) ⊆ A un şir convergent şi fie x = limn xn; deoarece A este
compactă există un subşir (xln) al şirului (xn) convergent la un punct y ∈ A.
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Rezultă că xln → x şi, cum limita unui şir convergent este unică, x = y. Deci
limn xn ∈ A ceea ce arată că A este ı̂nchisă.

Reciproc, să presupunem că A este o mulţime mărginită şi ı̂nchisă din Rk

şi să considerăm un şir (xn) ⊆ A. Rezultă că (xn) este mărginit şi atunci,
din lema lui Cesàro (teorema 1.3.18), el are un subşir (xln) ⊆ A convergent.
Deoarece A este ı̂nchisă limn xln ∈ A. Deci A este compactă.

�

1.3.34 Exemple. 1). Submulţimile finite ale lui Rk ŝınt mulţimi compacte
(orice şir de elemente dintr-o astfel de mulţime conţine un subşir constant).
2). Sferele ı̂nchise ŝınt mulţimi compacte (ŝınt mulţimi mărginite şi ı̂nchise -
vezi punctul 1) de la exemplul 1.3.27).
3). Segmentele ı̂nchise ŝınt mulţimi compacte (vezi punctul 3) de la exemplul
1.3.27); semidreptele sau dreptele nu ŝınt compacte.
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Funcţii de mai multe variabile

2.1 Definiţii. Exemple.

2.1.1 Definiţie. Fie A ⊆ Rk şi f : A → Rl;
• dacă k = l = 1, f este o funcţie reală de o variabilă reală,
• dacă k > 1 şi l = 1, f este o funcţie reală sau scalară de mai multe
variabile,
• dacă k = 1 şi l > 1, f este o funcţie vectorială de o variabilă reală,
• ı̂n sf̂ırşit ı̂n cazul k > 1, l > 1, f este o funcţie vectorială de mai multe
variabile reale.
Mulţimea Gf = {(x, f(x) : x ∈ A} ⊆ Rk × Rl ≡ Rk+l se numeşte graficul
funcţiei f .

2.1.2 Exemple.

1). Fie x0, y0 ∈ Rk; funcţia f : R → Rk, f(t) = x0 + t(y0 − x0),∀t ∈ R,
este o funcţie vectorială de o variabilă. Graficul lui f este dreapta care trece
prin punctele x0 şi y0. f |

[0,1]
- restricţia acestei funcţii la intervalul ı̂nchis

[0, 1] - are drept grafic segmentul de capete x0 şi y0.

2). Fie x0, y0, z0 ∈ R3; funcţia f : R2 → R3, f(t, s) = t · x0 + s · y0 + (1−
t− s) · z0,∀(t, s) ∈ R2, are drept grafic planul care trece prin x0, y0 şi z0.

3). Aplicaţia f : [0, +∞)×[0, 2π) → R2 definită prin f(r, u) = (x, y) unde{
x = r cos u,
y = r sin u

este o surjecţie; ea reprezintă trecerea de la coordonatele

carteziene ı̂n plan la cele polare. Restricţia ei la (0, +∞) × [0, 2π) este o
bijecţie pe R2 \ {(0, 0)}.

33



34 Capitolul 2. Funcţii de mai multe variabile

4). Aplicaţia f : [0, +∞)×[0, 2π)×[−π
2
, +π

2
] → R3 definită prin f(r, u, v) =

(x, y, z) unde


x = r cos u cos v,
y = r sin u cos v
z = r sin v

este o surjecţie; ea reprezintă trecerea de

la coordonatele carteziene la coordonatele polare ı̂n spaţiu. Semnificaţia vari-
abilelor r, u şi v este redată ı̂n schiţa de mai jos.

	

-

6

x

y

z
(x, y, z)

r

u

v

(x, y, 0)

(0, 0, 0)

Restricţia acestei aplicaţii la (0, +∞)× [0, 2π)× (−π
2
, +π

2
) este o bijecţie

pe R3 \ {(0, 0, z) : z ∈ R}
5). Norma ‖ · ‖ pe Rk este o aplicaţie scalară de mai n variabile reale.

Produsul scalar (·, ·) pe Rk este o aplicaţie scalară de 2 · k variabile.

2.1.3 Definiţie. Fie f : A ⊆ Rk → Rl; ∀x ∈ A, f(x) ∈ Rl deci f(x) =
(f1(x), ..., fm(x)) unde f1, ..., fm : A → R ŝınt funcţii scalare. Funcţiile
f1, ..., fm se numesc funcţiile de coordonate ale lui f . Dacă e1, ..., em

este baza canonică ı̂n Rl (ei = (0, ..., 0, 1, 0, ..., 0), unde cifra 1 este plasată
pe locul i) atunci, ∀x ∈ Rk,∀i ∈ {1, ...,m}, fi(x) = (f(x), ei) sau, scris
funcţional, fi = (f, ei).

Vom mai scrie f = (f1, ..., fm) pentru a nota că f1, ..., fm ŝınt funcţiile
scalare de coordonate ale funcţiei f .

Operaţii cu funcţii

Fie f, g : A ⊆ Rk → Rl şi t ∈ R; definim atunci funcţiile sumă, produs cu
scalari şi produs scalar ı̂n felul următor:
• f + g : A → Rl, (f + g)(x) = f(x) + g(x),∀x ∈ A;
• t · f : A → Rl, (t · f)(x) = t · f(x),∀x ∈ A;
• (f, g) : A → R, (f, g)(x) = (f(x), g(x)),∀x ∈ A.

Primele două ŝınt funcţii vectoriale iar ultima este funcţie scalară.
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Dacă f : A ⊆ Rk → Rl, f = (f1, ..., fm) iar g : B ⊆ Rl → Rp, g =
(g1, ..., gp) şi dacă este ı̂ndeplinită condiţia de compunere f(A) ⊆ B atunci
putem defini funcţia compusă:
• g ◦ f : A → Rp, (g ◦ f)(x) = g(f(x)),∀x ∈ A. Funcţia g ◦ f se reprezintă
prin funcţiile sale de coordonate prin:

g ◦ f = (g1(f1, ..., fm), ..., gp(f1, ..., fm)) .

2.2 Limite de funcţii

În cele ce urmează vom defini noţiunea de limită a unei funcţii de mai multe
variabile ı̂ntr-un punct de acumulare a mulţimii de definiţie.

2.2.1 Definiţie. Fie f : A ⊆ Rk → Rl şi a ∈ A′ (a punct de acumulare
pentru A); spunem că elementul L ∈ Rl este limita funcţiei f ı̂n punctul a
dacă pentru orice şir (xn) ⊆ A \ {a}, xn −→

Rk
a, f(xn) −→

Rl
L.

Vom nota această situaţie cu limx→a f(x) = L.
Vom spune că o funcţie f are limită ı̂ntr-un punct de acumulare a ∈ A′

dacă există L ∈ Rl a.̂ı. limx→a f(x) = L.

2.2.2 Observaţie. Ca şi ı̂n cazul funcţiilor de o variabilă reală apare
restricţia xn 6= a,∀k ∈ N; această precauţie se datorează următoarei situaţii:
este posibil să avem a ∈ A şi limx→a f(x) 6= f(a). Dacă nu am folosi restricţia
menţionată, printre şirurile (xn) ⊆ A cu xn → a ar putea figura şi şirul con-
stant xn = a,∀k ∈ N iar pentru acest şir f(xn) → f(a) !

Ca şi ı̂n cazul convergenţei şirurilor, existenţa limitei unei funcţii vectoriale
se reduce la existenţa limitelor funcţiilor sale scalare de coordonate.

2.2.3 Teoremă. Fie f = (f1, ..., fm) : A ⊆ Rk → Rl, a ∈ A′ şi L =
(L1, ..., Lm) ∈ Rl; funcţia vectorială f are limita L ı̂n a dacă şi numai dacă,
∀i ∈ {1, ...,m}, funcţia scalară fi are limita Li ı̂n a.

Demonstraţia este o consecinţă imediată a definiţiei şi a teoremei 1.3.13.

2.2.4 Propoziţie. Fie f : (α1, α2)× (β1, β2) → R, a ∈ (α1, α2), b ∈ (β1, β2).
Presupunem că ŝınt ı̂ndeplinite condiţiile:
1). ∃ lim(x,y)→(a,b) f(x, y) = l,
2). ∀x ∈ (α1, α2),∃ limy→b f(x, y) = g(x),
3). ∀y ∈ (β1, β2),∃ limx→a f(x, y) = h(y).

Atunci ∃ limx→a g(x) = l şi ∃ limy→b h(y) = l.
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Demonstraţie. Într-adevăr, condiţiile 2). şi 3). definesc funcţiile scalare
g : (α1, α2) → R şi h : (β1, β2) → R.

Din 1)., ∀ε > 0,∃δ > 0 a.̂ı. ∀(x, y) ∈ (α1, α2) × (β1, β2) \ {(a, b)} cu
|x − a| < δ şi |y − b| < δ rezultă |f(x, y) − l| < ε

2
; alegem δ destul de mic

pentru ca (a− δ, a + δ) ⊆ (α1, α2) şi (b− δ, b + δ) ⊆ (β1, β2).
Fie x ∈ (a− δ, a+ δ) \ {a} arbitrar, dar momentan fixat; deoarece g(x) =

limy→b f(x, y), ∃δx > 0 a.̂ı. ∀y ∈ (b−δx, b+δx) cu y 6= x, |f(x, y)−g(x)| < ε
2
;

evident putem alege δx < δ.
Fie un y ∈ (b− δx, b + δx) ⊆ (b− δ, b + δ) cu y 6= x; cum x ∈ (a− δ, a + δ)

şi (x, y) 6= (a, b), |f(x, y) − l| < ε
2
. Atunci |g(x) − l| ≤ |g(x) − f(x, y)| +

|f(x, y)− l| < ε
2

+ ε
2

= ε.
Rezultă că există limx→a g(x) = l. Similar se arată că limy→b h(y) = l.

�

2.2.5 Definiţie. Limitele lim
x→a

g(x) = lim
x→a

[
lim
y→b

f(x, y)

]
şi limy→b h(y) =

limy→b

[
lim
x→a

f(x, y)
]

se numesc limite iterate ale funcţiei f ı̂n punctul (a, b).

2.2.6 Observaţie. Dacă limitele iterate ale unei funcţii ı̂ntr-un punct de
acumulare a mulţimii sale de definiţie există şi nu ŝınt egale, funcţia nu poate
avea limită ı̂n acel punct. Este ı̂nsă posibil ca limitele iterate să existe, să fie
egale, şi totuşi funcţia să nu aibă limită. Să se studieze ı̂n acest sens exemplul
următor.

Fie f : R2 → R definită prin

f(x, y) =

{ xy

x2 + y2
, (x, y) 6= (0, 0),

0 , (x, y) = (0, 0).

Să se arate că lim
x→0

[
lim
y→0

f(x, y)

]
= 0 = lim

y→0

[
lim
x→0

f(x, y)
]

dar funcţia nu are

limită ı̂n (0, 0).
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2.2 Limite de funcţii

Următoarul rezultat este o caracterizare de tip ε−δ pentru limita unei funcţii.

2.2.7 Teoremă. Fie f : A ⊆ Rk → Rl, a ∈ A′ şi L ∈ Rl;
limx→a f(x) = L dacă şi numai dacă

(ε− δ) ∀ε > 0,∃δ > 0 a.̂ı. ∀x ∈ A \ {a}, ‖x− a‖ < δ, ‖f(x)− L‖ < ε.

Demonstraţie. (=⇒): Presupunem că limx→a f(x) = L şi totuşi condiţia
(ε − δ) nu are loc; atunci există ε > 0 a.̂ı. ∀k ∈ N∗,∃xn ∈ A \ {a} cu
‖xn−a‖ < 1

k
şi ‖f(xn)−L‖ ≥ ε. Rezultă că (xn) ⊆ A\{a}, xn → a şi totuşi

f(xn) 6→ L ceea ce contrazice ipoteza.
(⇐=): Presupunem că este ı̂ndeplinită condiţia (ε − δ) şi fie (xn) ⊆

A \ {a}, xn → a; ∀ε > 0 fie δ > 0 numărul a cărui existenţă este asigurată
de condiţia (ε − δ). Deoarece xn → a, ∃k0 ∈ N a.̂ı. ∀k ≥ k0, ‖xn − a‖ < δ.
Rezultă atunci că ‖f(xn)− L‖ < ε ceea ce arată că f(xn) → L.

�

2.2.8 Observaţie. Teorema precedentă poate fi reformulată astfel:
limx→a f(x) = L ⇐⇒ pentru orice sferă S(L, ε) ⊆ Rl există o sferă S(a, δ) ⊆
Rk aşa fel ı̂nĉıt, oricare ar fi x ∈ A ∩ S(a, δ) \ {a}, f(x) ∈ S(L, ε).

Putem formula o condiţie echivalentă ı̂n limbajul vecinătăţilor.

2.2.9 Propoziţie. limx→a f(x) = L ⇐⇒ ∀V ∈ V(L),∃U ∈ V(a) a.̂ı. ∀x ∈
A ∩ U \ {a}, f(x) ∈ V .

37
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Putem acum prezenta o condiţie de existenţă a limitei unei funcţii ı̂ntr-un
punct de acumulare a mulţimii sale de definiţie.

2.2.10 Teoremă (teorema lui Cauchy). O funcţie f : A ⊆ Rk → Rl admite
limită ı̂ntr-un punct de acumulare a ∈ A′ dacă şi numai dacă
(C)
∀ε > 0,∃δ > 0,∀x, y ∈ A \ {a}, ‖x− a‖ < δ, ‖y − a‖ < δ, ‖f(x)− f(y)‖ < ε.

Demonstraţie. Necesitatea. Presupunem că funcţia f are limită ı̂n a; deci
există L ∈ Rl a.̂ı. limx→a f(x) = L. Utiliẑınd condiţia (ε − δ) din teorema
2.1.7, ∀ε > 0,∃δ > 0 a.̂ı., ∀x, y ∈ A \ {a}, ‖x − a‖ < δ, ‖y − a‖ < δ ⇒
‖f(x)− L‖ < ε

2
, ‖f(y)− L‖ < ε

2
de unde ‖f(x)− f(y)‖ < ε.miSuficienţa.

a). Presupunem condiţia (C) ı̂ndeplinită şi fie (xn) ∈ A \ {a}, xn → a;
atunci ∃k0 ∈ N a.̂ı. ∀k, l ≥ k0, ‖xn − a‖ < δ, ‖xl − a‖ < δ. Rezultă că
‖f(xn)− f(xl)‖ < ε. Atunci (f(xn)) este un şir Cauchy ı̂n spaţiul Rl şi deci
este convergent (teorema 1.3.20).

b). Fie acum două şiruri (xn), (yn) ⊆ A\{a} convergente la a; construim
atunci şirul (zn) ⊆ A \ {a} pun̂ınd z2k = xn şi z2k+1 = yn,∀k ∈ N. Şirul
(zn) este convergent la a şi atunci, proced̂ınd ı̂n acelaşi fel ca ı̂n a)., (f(zn))
este convergent ı̂n Rl. Atunci există un element L ∈ Rl a.̂ı. f(xn) → L şi
f(yn) → L.

Deci pentru orice şir din (xn) ⊆ A \ {a} convergent la a şirul (f(xn))
converge la acelaşi element L ∈ Rl; atunci limx→a f(x) = L.

�

Operaţii cu funcţii cu limită

Demonstraţia propoziţiei următoare se bazează pe definiţia limitei unei funcţii
ı̂ntr-un punct de acumulare şi pe operaţiile corespunzătoare cu limite de
şiruri.

2.2.11 Propoziţie. Fie f, g : A ⊆ Rn → Rl şi a ∈ A′ a.̂ı. ∃ limx→a f(x) ∈
Rl şi ∃ limx→a g(x) ∈ Rl; atunci:
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1). limx→a(f(x) + g(x)) = limx→a f(x) + limx→a g(x),
2). limx→a(t · f(x)) = t · limx→a f(x),

3). lim
x→a

(f(x), g(x)) =
(

lim
x→a

f(x), lim
x→a

g(x)
)

,

4). limx→a ‖f(x)‖ = ‖ limx→a f(x)‖.
Dacă m = 1, f(A) ⊆ R∗ şi limx→a f(x) 6= 0,

5). limx→a

(
1

f(x)

)
=

1

limx→a f(x)
.

2.2.12 Propoziţie. Fie f : A ⊆ Rn → Rl, a ∈ A′, g : B ⊆ Rl → Rp, b ∈ B′

şi f(A) ⊆ B.
Dacă există limx→a f(x) = b, există limy→b g(y) = l şi f(x) 6= b, ∀x ∈

A \ {a} atunci există limx→a(g ◦ f)(x) = l.

Demonstraţie. Fie (xk) ⊆ A \ {a}, xk → a; deoarece f(A) ⊆ B, şirul
(yk) = (f(xk)) ⊆ B. Cum f(x) 6= b, ∀x ∈ A \ {a}, yk 6= b, ∀k ∈ N. În
sf̂ırşit din limx→a f(x) = b rezultă că yk → b. Dar limy→b g(y) = l şi deci
(g ◦ f)(xk) = g(yk) → l. Rezultă atunci că există limx→a(g ◦ f)(x) = l.

�

Semnul unei funcţii cu limită

2.2.13 Propoziţie. Fie f : A ⊆ Rk → R şi a ∈ A′; dacă există limx→a f(x) =
L 6= 0 atunci ∃δ > 0 a.̂ı. ∀x ∈ S(a, δ) ∩ A \ {a}, f(x) · L > 0 (funcţia f are
acelaşi semn cu limita sa L pe o vecinătate a punctului a).

Demonstraţie. Deoarece L 6= 0, ε =
|L|
2

> 0; utiliẑınd condiţia (ε− δ) din

teorema 2.2.4, ∃δ > 0 a.̂ı. ∀x ∈ A \ {a} cu ‖x − a‖ < δ, |f(x) − L| < ε.
Rezultă deci că ∀x ∈ S(a, δ) ∩ A \ {a},

L− |L|
2

< f(x) < L +
|L|
2

.

Dacă L > 0 rezultă că f(x) >
L

2
> 0 iar dacă L < 0, f(x) <

L

2
< 0. În

ambele cazuri f(x) are acelaşi semn cu L şi deci f(x) · L > 0.
�

2.3 Funcţii continue

2.3.1 Definiţie. Fie f : A ⊆ Rk → Rl şi a ∈ A; spunem că funcţia f este
continuă ı̂n a dacă ∀(xn) ⊆ A, xn → a =⇒ f(xn) → f(a).



40 Capitolul 2. Funcţii de mai multe variabile

Funcţia f este continuă pe mulţimea A dacă este continuă ı̂n toate
punctele mulţimii A.

Dacă f nu este continuă ı̂ntr-un punct b ∈ A spunem că f este discon-
tinuă ı̂n b.

Exemplu. Fie funcţia f : R2 → R definită prin

f(x, y) =


x2 − y2

x2 + y2
, (x, y) 6= (0, 0),

0 , (x, y) = (0, 0).

∀(a, b) ∈ R2 \ {(0, 0)},∀(xn, yn) → (a, b), f(xn, yn) → f(a, b). Astfel f este
continuă ı̂n (a, b).

Dacă (a, b) = (0, 0) şi considerăm un şir (xn) ⊆ R \ {0}, xn → 0 şi un
t ∈ R atunci şirul (xn, t·xn) ⊆ R2\{(0, 0)} converge la (0, 0) iar f(xn, t·xn) =
1− t2

1 + t2
. Rezultă că limita lui (f(xn, yn)) depinde de t şi deci f este discontinuă

ı̂n (0, 0).
Remarcăm din definiţie că problema continuităţii se pune ı̂n toate punctele

mulţimii de definiţie a unei funcţii: şi ı̂n punctele de acumulare şi ı̂n cele
izolate; ı̂n propoziţia următoare stabilim legătura ı̂ntre existenţa limitei şi
continuitatea unei funcţii ı̂ntr-un punct.

2.3.2 Propoziţie. Fie f : A ⊆ Rk → Rl şi fie a ∈ A;
1). Dacă a este punct izolat pentru A atunci f este continuă ı̂n a (fără

nici-o altă condiţie).
2). Dacă a ∈ A ∩ A′ atunci condiţia necesară şi suficientă ca f să fie

continuă ı̂n a este ca să existe limx→a f(x) = f(a).

Demonstraţie. 1). Dacă a este punct izolat al mulţimii A atunci există
o vecinătate V ∈ V(a) a.̂ı. V ∩ A = {a}. Atunci, ∀(xn) ⊆ A cu xn → a,
∃n0 ∈ N a.̂ı. ∀n ≥ n0, x

n = a. Rezultă că şirul (f(xn)) este constant (cu
excepţia unui număr finit de termeni) şi deci converge la constanta f(a).

2). Fie acum a ∈ A ∩ A′. Presupunem ı̂nt̂ıi că f este continuă ı̂n a şi că
(xn) ⊆ A \ {a}, xn → a; din definiţia continuităţii, f(xn) → f(a). Rezultă că
există limx→a f(x) = f(a).

Să presupunem acum că există limx→a f(x) = f(a). Dacă (xn) ⊆ A este
un şir arbitrar cu xn → a atunci putem avea următoarele trei situaţii:

a). Şirul (xn) are toţi termenii (cu excepţia eventuală a unui număr finit
dintre ei) diferiţi de a; din definiţia limitei rezultă atunci că f(xn) → f(a).
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b). Şirul (xn) are toţi termenii (cu excepţia eventuală a unui număr finit
dintre ei) egali cu a; atunci şirul (f(xn)) este un şir constant şi deci converge
la valoarea constantei f(a).

c). Şirul (xn) are o infinitate de termeni egali cu a şi o infinitate de
termeni diferiţi de a; fie N, M ⊆ N, N ∪ M = N două mulţimi infinite a.̂ı.
xn 6= a,∀n ∈ N şi xn = a,∀n ∈ M . Atunci (xn)n∈N ⊆ A \ {a} este un
subşir al şirului (xn)n∈N şi deci este convergent la a; cum limx→a f(x) = f(a),
(f(xn))n∈N → f(a). Şirul (xn)n∈M este constant şi deci şi (f(xn))n∈M este
constant egal cu f(a) şi astfel converge la f(a). Rezultă că (f(xn))n∈N are
două subşiruri convergente la aceeaşi limită f(a), subşiruri ce epuizează şirul;
atunci (f(xn))n∈N → f(a).

În toate cele trei situaţii posibile f(xn) → f(a) şi astfel f este continuă
ı̂n a.

�

Propoziţia următoare reduce studiul continuităţii unei funcţii vectoriale
la studiul continuităţii funcţiilor scalare de coordonate.

2.3.3 Propoziţie. Fie f = (f1, ..., fl) : A ⊆ Rk → Rl şi a ∈ A; f este
continuă ı̂n a dacă şi numai dacă, ∀i ∈ {1, ..., l}, fi este continuă ı̂n a.

Demonstraţie. Demonstraţia este o consecinţă a definiţiei continuităţii şi
a caracterizării convergenţei şirurilor dată ı̂n teorema 1.3.13.

Teorema următoare dă caracterizări pentru continuitate asemănătoare
celor date pentru limita unei funcţii ı̂n teorema 2.2.4 şi ı̂n propoziţia 2.2.6.

2.3.4 Teoremă. Fie f : A ⊆ Rk → Rl şi a ∈ A; următoarele afirmaţii ŝınt
echivalente:

1). f este continuă ı̂n a;
2). ∀ε > 0,∃δ > 0 a.̂ı. ∀x ∈ A cu ‖x− a‖ < δ, ‖f(x)− f(a)‖ < ε;mi3). ∀V ∈ V(f(a)),∃U ∈ V(a) a.̂ı. ∀x ∈ A ∩ U, f(x) ∈ V .

Demonstraţie. (1).⇐⇒ 2).): Dacă a ∈ A∩A′ afirmaţia este o consecinţă a
punctului 2) din propoziţia 2.3.2 şi a teoremei 2.2.4 ı̂n care se dă caracteri-
zarea (ε− δ) pentru limita unei funcţii ı̂ntr-un punct de acumulare.

Dacă a este punct izolat f este automat continuă; ı̂n mod asemănător
condiţia 2) este automat ı̂ndeplinită deoarece există o vecinătate şi deci o sferă
S(a, δ) a.̂ı. S(a, δ)∩A = {a} şi pentru orice x ∈ S(a, δ)∩A, ‖f(x)−f(a)‖ =
‖f(a)− f(a)‖ = 0 < ε,∀ε > 0.

Condiţia 2). poate fi reformulată astfel: ∀S(f(a), ε),∃S(a, δ) a.̂ı. ∀x ∈
S(a, δ) ∩ A, f(x) ∈ S(f(a), ε).
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Ţin̂ınd cont că familia sferelor cu centrul ı̂ntr-un punct formează un sistem
fundamental de vecinătăţi pentru acel punct, 3). este echivalent cu 2).

�

Operaţii cu funcţii continue

Următoarea propoziţie este o consecinţă a propoziţiilor 2.2.11 şi 2.3.2.

2.3.5 Propoziţie. Fie f, g : A ⊆ Rk → Rl şi a ∈ A a.̂ı. f şi g ŝınt continue
pe A; atunci:
1). f + g : A → Rl este continuă pe A,

2). t · f : A → Rl este continuă pe A,∀t ∈ R,
3). (f, g) : A → R este continuă pe A,
4). ‖f‖ : A → R este continuă pe A.

Dacă l = 1, şi f(A) ⊆ R∗

5).
1

f
: A → R este continuă pe A.

Propoziţia 2.2.12 are următoarea replică pentru continuitate:

2.3.6 Propoziţie. Fie f : A ⊆ Rk → Rl, a ∈ A, g : B ⊆ Rl → Rm, b ∈ B şi
f(A) ⊆ B.

Dacă f este continuă ı̂n a şi g este continuă ı̂n b atunci g◦f este continuă
ı̂n a.

Dacă f este continuă pe A şi g este continuă pe B atunci g ◦ f este
continuă pe A.

Demonstraţia este o consecinţă imediată a definiţiei continuităţii.
În sf̂ırşit, avem pentru continuitate un rezultat asemănător propoziţiei

2.2.13 ı̂n care se precizează semnul local al unei funcţii cu limită; demonstraţia
utilizează propoziţia 2.2.13 şi din nou propoziţia 2.3.2.

2.3.7 Propoziţie. Fie f : A ⊆ Rk → R, a ∈ A a.̂ı. f este continuă ı̂n a;
dacă f(a) 6= 0 atunci ∃δ > 0 a.̂ı. ∀x ∈ S(a, δ)∩A, f(x) · f(a) > 0 (funcţia f
are acelaşi semn cu f(a) pe o vecinătate a punctului a).

Proprietăţi ale funcţiilor continue pe mulţimi

În această secţiune vom prezenta ĉıteva rezultate deosebit de importante
privind comportarea funcţiilor continue pe diverse tipuri de mulţimi.
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2.3.8 Teoremă. Fie f : A ⊆ Rk → Rl; dacă mulţimea A este compactă
ı̂n Rk şi funcţia f este continuă pe A atunci mulţimea valorilor lui f , f(A),
este mulţime compactă ı̂n Rl.

Demonstraţie. Pentru a demonstra că mulţimea f(A) este compactă ı̂n
Rl trebuie să arătăm că f(A) este mărginită şi ı̂nchisă (vezi teorema de
caracterizare 1.3.33).

Să presupunem prin reducere la absurd că f(A) nu este mărginită; rezultă
că putem alege, ∀n ∈ N, un element xn ∈ A a.̂ı. ‖f(xn)‖ ≥ n. Şirul
(xn) ⊆ A admite un subşir (xln) convergent la un element x ∈ A (A este
mulţime compactă). Deoarece f este continuă pe A, f(xln) → f(a) şi deci
şirul (f ln) este mărginit (propoziţia 1.3.14). Aceasta intră ı̂n contradicţie cu
‖f(xln)‖ ≥ ln ≥ n,∀n ∈ N. Deci ipoteza că f(A) este nemărginită conduce
la o contradicţie.

Să arătăm acum că f(A) este mulţime ı̂nchisă. Vom utiliza pentru aceasta
caracterizarea mulţimilor ı̂nchise prezentată ı̂n teorema 1.3.28, punctul 3).
Fie deci (yn) ⊆ f(A) un şir convergent la un element y ∈ Rl; atunci există
şirul (xn) ⊆ A a.̂ı., ∀n ∈ N, yn = f(xn). Deoarece A este compactă şirul
(xn) admite un subşir (xln) convergent la un element x ∈ A. Cum funcţia f
este continuă ı̂n x, limn f(xln) = f(x). Pe de altă parte, f(xln) = yln → y.
Unicitatea limitei unui şir convergent ne conduce la concluzia y = f(x) ∈
f(A). Deci orice şir convergent din f(A) are limita ı̂n f(A) ceea ce ı̂nseamnă
că f(A) este mulţime ı̂nchisă.

f(A) fiind mulţime mărginită şi ı̂nchisă este mulţime compactă ı̂n Rl.
�

Un corolar al acestei teoreme utilizează faptul că mulţimile compacte din
R admit un cel mai mic şi un cel mai mare element (̂ışi ating marginile).

2.3.9 Corolar (teorema lui Weierstrass). Fie f : A ⊆ Rk → R; dacă A
este compactă ı̂n Rk şi f este continuă pe A atunci există două elemente
xm, xM ∈ A a.̂ı. f(xm) ≤ f(x) ≤ f(xM),∀x ∈ A.

2.3.10 Observaţie. În cazul l > 1 concluzia teoremei lui Weierstrass nu
mai are loc; ı̂ntr-adevăr, aşa cum se poate uşor verifica, aplicaţia iden-
tică f : R2 → R2, f(x) = x, ∀x ∈ R2 este continuă peste tot. Sfera
ı̂nchisă T ((0, 0), 1) ⊆ R2 (discul ı̂nchis cu centrul ı̂n origine şi de rază 1
din plan) este o mulţime compactă (mărginită şi ı̂nchisă) dar mulţimea
f(T ((0, 0), 1)) = T ((0, 0), 1) nu are un cel mai mic şi nici un cel mai mare
element (inf T ((0, 0), 1) = (−1,−1) iar sup T ((0, 0), 1) = (1, 1)).
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Ca şi funcţiile reale de o variabilă reală, funcţiile vectoriale de mai multe
variabile continue pe mulţimi compacte ŝınt continue uniform. Să precizăm
sensul acestei continuităţi uniforme.

2.3.11 Definiţie. Fie f : A ⊆ Rk → Rl; spunem că funcţia f este uniform
continuă pe A dacă, ∀ε > 0,∃δ > 0 a.̂ı. ∀x, y ∈ A cu ‖x− y‖ < δ, rezultă că
‖f(x)− f(y)‖ < ε.

2.3.12 Observaţie. Să observăm că dacă o funcţie f : A ⊆ Rk → Rl este
uniform continuă pe A:
∀ε > 0,∃δε > 0 a.̂ı. ∀x ∈ A,∀y ∈ A cu ‖x− y‖ < δ, ‖f(x)− f(y)‖ < ε=⇒
∀ε > 0,∀x ∈ A,∃δε,x > 0 a.̂ı. ∀y ∈ A cu ‖x− y‖ < δ, ‖f(x)− f(y)‖ < ε ⇐⇒
∀x ∈ A,∀ε > 0,∃δε,x > 0 a.̂ı. ∀y ∈ A cu ‖x− y‖ < δ, ‖f(x)− f(y)‖ < ε ⇐⇒
∀x ∈ A, f este funcţie continuă ı̂n x ⇐⇒
f este continuă pe mulţimea A.

Aşa cum se observă din cele de mai sus, alegerea lui δ este, ı̂n cazul
funcţiilor uniform continue, independentă de x ∈ A şi deci, pentru astfel de
funcţii, continuitatea ı̂n fiecare punct x se scrie ı̂n mod uniform (cu acelaşi δ
dependent doar de ε); de aici şi denumirea de uniformă continuitate.

Rezultă că orice funcţie uniform continuă pe o mulţime este continuă
pe acea mulţime; reciproca acestei afirmaţii nu este adevărată nici pentru
funcţiile reale de o variabilă reală şi cu at̂ıt mai mult ea nu va funcţiona
pentru funcţiile de mai multe variabile.

Un exemplu remarcabil de funcţii uniform continue ı̂l constituie funcţiile
lipschitziene.

2.3.13 Definiţie. O funcţie f : A ⊆ Rk → Rl este funcţie lipschitziană
pe A (sau verifică condiţia lui Lipschitz pe mulţimea A) dacă există un
număr L > 0 (constanta lui Lipschitz) a.̂ı. ‖f(x)−f(y)‖ ≤ L·‖x−y‖,∀x, y ∈
A.

2.3.14 Propoziţie. Orice lipschitziană pe o mulţime este uniform continuă
pe acea mulţime.

Demonstraţie. Într-adevăr, fie f : A ⊆ Rk → Rl o funcţie lipschitziană pe

A cu constanta Lipschitz L; atunci ∀ε > 0,∃δ =
ε

L
> 0 a.̂ı. ∀x, y ∈ A cu

‖x− y‖ < δ, ‖f(x)− f(y)‖ ≤ L · ‖x− y‖ < L · ε

L
= ε.

�

În propoziţia următoare dăm o carcaterizare secvenţială (cu ajutorul
şirurilor) a uniformei continuităţi a unei aplicaţii.
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2.3.15 Propoziţie. O funcţie f : A ⊆ Rk → Rl este uniform continuă pe A
dacă şi numai dacă oricare ar fi două şiruri (xn), (yn) ⊆ A cu xn−yn → 0Rk ,
f(xn) − f(yn) → 0Rl (primul 0 este elementul nul din Rk iar al doilea 0
elementul nul din spaţiul Rl).

Demonstraţie. (=⇒): Presupunem că f este uniform continuă şi fie două
şiruri (xn), (yn) ⊆ A cu xn − yn → 0Rk ; ∀ε > 0, din condiţia de uniformă
continuitate, ∃δ > 0 a.̂ı. ∀x, y ∈ A cu ‖x − y‖ < δ, ‖f(x) − f(y)‖ < ε.
Deoarece xn − yn → 0Rk , ∃n0 ∈ N a.̂ı. ∀n ≥ n0, ‖xn − yn‖ < δ şi atunci
‖f(xn)− f(yn)‖ < ε,∀n ≥ n0. Aceasta antrenează f(xn)− f(yn) → 0Rl .

(⇐=) Să presupunem că, deşi condiţia secvenţială este ı̂ndeplinită, f nu
este uniform continuă. Atunci există un număr ε0 > 0 a.̂ı., ∀n ∈ N∗ şi deci

pentru δ =
1

n
există xn, yn ∈ A cu ‖xn−yn‖ <

1

n
şi totuşi ‖f(xn)−f(yn)‖ ≥

ε0. Rezultă atunci că xn−yn → 0Rk şi f(xn)−f(yn) 9 0Rl ceea ce contrazice
ipoteza făcută.

�

Am observat că orice funcţie uniform continuă este continuă; ı̂n situaţia
ı̂n care mulţimea de definiţie a funcţiei este compactă, are loc şi reciproca
acestei condiţii.

2.3.16 Teoremă (teorema lui Cantor). Fie A ⊆ Rk o mulţime compactă şi
f : A → Rl o funcţie continuă pe A; atunci f este uniform continuă pe A.

mi Demonstraţie. Să presupunem prin reducere la absurd că f este
continuă pe mulţimea compactă A dar că nu este uniform continuă; uti-
liẑınd caracterizarea secvenţială din propoziţia precedentă, există două şiruri
(xn), (yn) ⊆ A cu xn − yn → 0Rk dar f(xn)− f(yn) 9 0Rl . Atunci ∃ε0 > 0 şi
există o mulţime infinită N ⊆ N a.̂ı. ‖f(xn)− f(yn)‖ ≥ ε0,∀n ∈ N .

Deoarece A este compactă, există o mulţime infinită N1 ⊆ N a.̂ı. subşirul
(xn)n∈N1 să fie convergent la un element x ∈ A şi există o submulţime infinită
N2 ⊆ N1 a.̂ı. subşirul (yn)n∈N2 să conveargă la un element y ∈ A; atunci
(xn)n∈N2 converge la x (este un subşir al şirului (xn)n∈N1).

Deoarece (xn − yn)n∈N2 → 0Rk rezultă x = y. Funcţia f este continuă pe
A şi deci este continuă ı̂n x; cum (xn)n∈N2 → x şi (yn)n∈N2 → x, (f(xn) −
f(yn))n∈N2 → f(x)−f(x) = 0Rl . Dar aceasta vine ı̂n contradicţie cu condiţia
‖f(xn)− f(yn)‖ ≥ ε0,∀n ∈ N2. Contradicţia obţinută arată că ipoteza că f
nu este uniform continuă este falsă.

�



Capitolul 2

Funcţii de mai multe variabile

2.3 Funcţii continue

Proprietăţi ale funcţiilor continue pe mulţimi

O altă proprietate remarcabilă a funcţiilor continue este aceea de a conserva
conexiunea. Vom introduce ı̂nt̂ıi noţiunea de mulţime conexă prin arce ı̂n
Rk.

2.3.17 Definiţie. Fie x, y ∈ Rk; o funcţie ψ : [a, b] → Rk, continuă pe
segmentul [a, b] ⊆ R, cu proprietatea că ψ(a) = x şi ψ(b) = y se numeşte
drum sau arc ce uneşte x cu y. Mulţimea Gψ = ψ([a, b]) = {ψ(t) ∈ Rk : t ∈
[a, b]} se numeşte graficul arcului ψ.

2.3.18 Observaţie. În definiţia unui drum, intervalul [a, b] ⊆ R poate fi
ı̂nlocuit cu oricare alt interval ı̂nchis. De exemplu, dacă ψ : [a, b] → Rk este
un drum ce uneşte punctele x şi y din Rk şi definim ϕ : [0, 1] → [a, b] prin
ϕ(t) = (1− t) · a+ t · b, ∀t ∈ [0, 1] atunci ψ ◦ ϕ este de asemenea un drum ce
uneşte x cu y şi care are acelaşi grafic (Gψ = Gψ◦ϕ).

Mai exact, vom spune că două drumuri ψ : [a, b] → Rk şi θ : [c, d] → Rk

ŝınt echivalente dacă există o funcţie surjectivă şi strict crescătoare ϕ :
[c, d] → [a, b] a.̂ı. θ = ψ ◦ ϕ (să observăm că o asemenea funcţie ϕ este o
bijecţie continuă şi cu inversă continuă, deci este un homeomorfism). Este
clar că dacă ψ uneşte punctul x cu y atunci θ are aceeaşi proprietate. Relaţia
introdusă ı̂ntre drumuri este o relaţie de echivalenţă (reflexivă, simetrică şi
tranzitivă). O clasă de echivalenţă ı̂n raport cu această relaţie se numeşte

46
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curbă ı̂n Rk. Astfel ı̂n definiţia de mai sus se poate ı̂nlocui drumul ψ cu
orice alt drum echivalent.

2.3.19 Exemple. 1). ψ : [0, π] → R2, ψ(t) = (cos t, sin t),∀t ∈ [0, π], este
un arc plan ce uneşte punctul (1, 0) cu (−1, 0). Graficul acestui drum este
un semicerc plasat pe cercul cu centrul ı̂n (0, 0) şi de rază 1.

2). ∀x, y ∈ Rk, ψ : [0, 1] → Rk, ψ(t) = (1− t) · x+ t · y, ∀t ∈ [0, 1], este un
drum ce uneşte punctele x şi y; graficul său este segmentul [x, y].

2.3.20 Definiţie. O mulţime A ⊆ Rk se numeşte mulţime conexă prin
arce dacă pentru orice două puncte x, y ∈ A există un drum ψ care uneşte
x cu y a.̂ı. Gψ ⊆ A.

O mulţime deschisă şi conexă prin arce se numeşte domeniu.
A ⊆ Rk se numeşte mulţime convexă dacă pentru orice două puncte

x, y ∈ A segmentul [x, y] ⊆ A.

2.3.21 Observaţii. 1). Intuitiv o mulţime conexă prin arce este o mulţime
formată “dintr-o singură bucată”.

2). Aşa cum am observat ı̂n exemplul de mai sus, un segment [x, y] ⊆ Rk

este graficul unui drum ψ; rezultă de aici că orice mulţime convexă este
conexă prin arce.

3). Singurele mulţimi conexe prin arce ı̂n R ŝınt intervalele. Într-adevăr,
fie A ⊆ R conexă prin arce şi fie x, y două puncte arbitrare ı̂n A şi z a.̂ı.
x < z < y. Deoarece A este conexă prin arce există un drum, deci o funcţie
continuă ψ : [a, b] ⊆ R → R care uneşte x cu y şi al cărei grafic, Gψ, este
inclus ı̂n A. Atunci ψ(a) = x < z < y = ψ(b) şi, deoarece aplicaţia ψ
are proprietatea lui Darboux, există c ∈ [a, b] a.̂ı. ψ(c) = z. Însă, cum
ψ(c) ∈ Gψ ⊆ A, rezultă că z ∈ A. Astfel, mulţimea A, odată cu două
puncte, conţine şi orice punct aflat ı̂ntre ele; deci A este interval.

Deoarece intervalele ŝınt mulţimi convexe rezultă că, ı̂n R, mulţimile
conexe prin arce coincid cu mulţimile convexe.

În general ı̂nsă, pentru k > 1, reciproca nu este adevărată după cum
putem uşor remarca din exemplele următoare.

2.3.22 Exemple. 1). Orice sferă deschisă sau ı̂nchisă din Rk este mulţime
convexă (şi deci conexă prin arce). Într-adevăr, fie S(x, r) ⊆ Rk o sferă
deschisă cu centrul ı̂n x şi de rază r; ∀u, v ∈ S(x, r) vom demonstra că
[u, v] ⊆ S(x, r). ∀w ∈ [u, v],∃t ∈ [0, 1] a.̂ı. w = (1 − t) · u + t · v. Atunci
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‖w−x‖ = ‖((1−t)·u+t·v)−((1−t)·x+t·x)‖ = ‖(1−t)·(u−x)+t·(v−x)‖ ≤
(1− t) · ‖u− x‖+ t · ‖v − x‖ < (1− t) · r + t · r = r de unde w ∈ S(x, r).

2). Un cerc din R2 este o mulţime conexă prin arce care nu este convexă.
Într-adevăr, fie C(x, r) = {y ∈ R2 : ‖y − x‖ = r};∀u, v ∈ C(x, r),∃α, β ∈
[0, 2π) a.̂ı. u = x + (r cosα, r sinα) şi v = x + (r cos β, r sin β); vom pre-
supune că α ≤ β. Atunci aplicaţia ψ : [α, β] → R2 definită prin ψ(t) =
x+ (r cos t, r sin t),∀t ∈ [α, β] este un drum ce uneşte u şi v şi Gψ ⊆ C(x, r).
Este evident că, pentru u 6= v, [u, v] * C(x, r).

3). Graficul oricărui drum din Rk este o mulţime conexă prin arce. Într-
adevăr, fie ψ : [a, b] → Rk un drum ı̂n Rk şi fie Gψ = {ψ(t) : t ∈ [a, b]} graficul
acestui drum. Oricare ar fi x, y ∈ Gψ,∃c, d ∈ [a, b] a.̂ı. x = ψ(c), y = ψ(d).
Atunci aplicaţia φ : [c, d] → Rk definită prin φ(t) = ψ(t),∀t ∈ [c, d] (restricţia
funcţiei ψ la intervalul [c, d]) este un drum care uneşte x cu y şi al cărui grafic
este conţinut ı̂n Gψ.

4). Fie x şi y două puncte distincte din Rk; mulţimea formată din cele
două puncte A = {x, y} nu este conexă prin arce.

5). Vom prezenta acum o mulţime ceva mai complicată care nu este
conexă prin arce.

Fie A = {(x, sin 1
x
) : x ∈ (0, 1]} ⊆ R2. Atunci A este conexă prin arce dar

Ā nu este conexă prin arce.

Fie u = (x, sin 1
x
), v = (y, sin 1

y
) ∈ A şi să presupunem că x < y; atunci

aplicaţia ψ : [x, y] → A definită prin ψ(t) = (t, sin 1
t
),∀t ∈ [x, y], este con-

tinuă, are graficul ı̂n A şi ψ(x) = u, ψ(y) = v deci este un arc ce uneşte u cu
v. Rezultă că A este conexă prin arce.

Să notăm cu B = {0} × [−1, 1]; se poate uşor constata că Ā = B ∪ A.
Să presupunem că Ā este conexă prin arce; atunci există o funcţie continuă
ϕ : [0, 1] → Ā a.̂ı. ϕ(0) = (0, 1) şi ϕ(1) = (1, sin 1) (un arc ce uneşte punctele
(0, 1) şi (1, sin 1) din mulţimea Ā). Fie u : [0, 1] → R, v : [0, 1] → R funcţiile
de coordonate ale lui ϕ; atunci u şi v ŝınt continue pe [0, 1]. Mulţimea B
este ı̂nchisă ı̂n R2 şi atunci ϕ−1(B) este ı̂nchisă şi mărginită ı̂n [0, 1] deci
este compactă; fie atunci t0 = supϕ−1(B) ∈ ϕ−1(B). Rezultă că u(t0) =

0, v(t0) ∈ [−1, 1] şi ∀t > t0, ϕ(t) ∈ A de unde u(t) > 0 şi v(t) = sin

(
1

u(t)

)
.

Considerăm un şir arbitrar (xn) ↓ 0; atunci, cum ∀n ∈ N∗, u(t0 + 1
n
) > 0,

există un şir strict crescător (kn) ↑ +∞ a.̂ı. 0 = u(t0) < xkn < u(t0 + 1
n
).

Funcţia u fiind continuă are proprietatea lui Darboux şi deci există, ∀n ∈
N∗, tn ∈ (t0, t0 + 1

n
) a.̂ı. u(tn) = xkn . Atunci tn → t0 şi deci u(tn) →
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u(t0) = 0 iar v(tn) → v(t0). Dacă alegem de exemplu xn =
1

nπ
atunci

v(tn) = sin

(
1

u(tn)

)
= sin(knπ) = 0 şi deci v(t0) = 0; pe de altă parte dacă

xn =
2

(4n+ 1)π
atunci v(tn) = sin

(
(4kn + 1)π

2

)
= 1 de unde v(t0) = 1 ceea

ce reprezintă o contradicţie. Deci Ā nu este conexă prin arce.

2.3.23 Teoremă. Fie f : A ⊆ Rk → Rl; dacă mulţimea A este conexă prin
arce şi funcţia f este continuă pe A atunci mulţimea valorilor lui f , f(A),
este conexă prin arce ı̂n Rl.

Demonstraţie. Fie u, v ∈ f(A) două puncte arbitrare şi fie x, y ∈ A a.̂ı.
u = f(x) şi v = f(y). Deoarece A este conexă prin arce, există o funcţie
continuă ψ : [a, b] ⊆ R → Rk a.̂ı. Gψ ⊆ A şi ψ(a) = x, ψ(b) = y. Atunci
f ◦ ψ : [a, b] → Rl este funcţie continuă (compunerea a două funcţii continue
este funcţie continuă - propoziţia 2.3.6), u = f(x) = f(ψ(a)) = (f◦ψ)(a), v =
f(y) = f(ψ(b)) = (f ◦ ψ)(b) şi Gf◦ψ = (f ◦ ψ)([a, b]) = f(ψ([a, b]) ⊆ f(A);
deci f ◦ ψ este un arc ce uneşte u cu v şi a cărui grafic este inclus ı̂n f(A).

�

2.3.24 Observaţie. Trebuie să remarcăm aici că imaginea printr-o funcţie
continuă a unei mulţimi convexe este mulţime conexă prin arce dar nu este,
ı̂n mod obligator, convexă. De exemplu, la 2.3.19 punctul 1), funcţia ψ duce
mulţimea convexă [0, π] ı̂n semicercul ψ([0, π]) care nu este mulţime con-
vexă. În general un drum este o funcţie continuă pe o mulţime convexă (un
interval ı̂nchis ı̂n R) a cărui imagine, graficul drumului, nu este ı̂n mod obli-
gatoriu convexă. Conexiunea prin arce este o proprietate topologică (legată
de structura topologică a spaţiului) pe ĉınd convexitatea este legată de struc-
tura algebrică de spaţiu liniar. În cazul particular al mulţimii R mulţimile
conexe prin arce coincid cu mulţimile convexe ale lui R care ŝınt intervalele.

Vom prezenta ı̂n finalul acestei secţiuni o aplicaţie interesantă a teoremei
de mai sus.

Fie C = C(x, r) = {y : ‖y − x‖ = r} ⊆ R2 un cerc cu centrul ı̂n x şi
de rază r din R2; aplicaţia s : C → C definită prin s(y) = 2x − y, ∀y ∈ C
asociază fiecărui punct de pe cercul C punctul să diametral opus; este evident
că s este funcţie continuă şi că s ◦ s este aplicaţia identică pe C.

2.3.25 miTeoremă. Dacă f : C → R este o funcţie reală continuă atunci
există y ∈ C a.̂ı. f(y) = f(s(y)) (deci există două puncte diametral opuse ı̂n
care f ia aceeaşi valoare).
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Demonstraţie. Definim funcţia g : C → R prin g(y) = f(y)−f(s(y)),∀y ∈
C; se observă că g este o funcţie continuă. Cum C este mulţime conexă
prin arce (exemplul 2.3.22, punctul 2)), teorema 2.3.23 ne asigură că g(C)
este conexă prin arce ı̂n R deci este convexă şi deci este un interval. Fie
acum y0 ∈ C; dacă g(y0) = 0 rezultă că f(y0) = f(s(y0)). Dacă g(y0) 6= 0,
g(s(y0)) = f(s(y0))− f(s(s(y0))) = f(s(y0))− f(y0) = −g(y0); atunci g(y0)
şi −g(y0) aparţin intervalului g(C) şi au semne contrare. Rezultă că 0 ∈ g(C)
şi deci există z0 ∈ C a.̂ı. f(z0) = f(s(z0)).

�

2.3.26 miObservaţii. 1). Dacă imaginăm un meridian (sau o paralelă)
a globului pămı̂ntesc ca un cerc şi considerăm funcţia care dă temperatura
la un moment dat ı̂n fiecare punct al acestui meridian atunci este plauzibilă
ipoteza că această funcţie este continuă. Consecinţa acestei ipoteze este că
există ı̂n fiecare moment pe fiecare meridian (ca şi pe fiecare paralelă) două
puncte diametral opuse cu aceeaşi temperatură.

2). Rezultatul stabilit ı̂n teorema precedentă este o variantă simplă a teo-
remei lui Borsuk-Ulam care afirmă că pentru orice funcţie continuă definită
pe C(x, r) = {y : ‖y − x‖ = r} ⊆ R3 → R2 există două puncte diametral
opuse ı̂n care f ia aceeaşi valoare.

2.4 Aplicaţii liniare

În această secţiune vom studia o clasă particulară de aplicaţii continue,
aplicaţiile liniare.

2.4.1 Definiţie. O funcţie T : Rk → Rl se numeşte aplicaţie liniară sau
operator liniar dacă conservă structura de spaţiu liniar, adică dacă verifică
condiţiile:

1). T (x+ y) = T (x) + T (y),∀x, y ∈ Rk,

2). T (t · x) = t · T (x),∀x ∈ Rk,∀t ∈ R.

2.4.2 Lemă. Fie T : Rk → Rl, T = (T1, ..., Tl) o aplicaţie liniară; atunci:

1). T (0) = 0;

2). T (x− y) = T (x)− T (y),∀x, y ∈ Rk;

3). ∀j ∈ {1, ..., l}, funcţiile de coordonate Tj : Rk → R ŝınt aplicaţii
liniare.
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Demonstraţie. 1). T (0) = T (0 + 0) = T (0) + T (0) de unde T (0) = 0.

2). T (x−y) = T (x+(−1) ·y) = T (x)+T ((−1) ·y) = T (x)+(−1)T (y) =
T (x)− T (y).

3). ∀x, y ∈ Rk, relaţia T (x + y) = T (x) + T (y) scrisă pe componente
conduce la (T1(x + y), ..., Tl(x + y)) = (T1(x) + T1(y), ..., Tl(x) + Tl(y)) de
unde rezultă că Tj(x + y) = Tj(x) + Tj(y),∀j ∈ {1, ..., l}. La fel se arată că
Tj(tx) = tTj(x),∀j ∈ {1, ..., l}.

�

Fie {e1, ..., ek} baza canonică a spaţiului Rk şi {f1, ..., fl} baza canonică a
lui Rl; reamintim că ∀i ∈ {1, ..., k}, ei = (0, ..., 0, 1, 0, ..., 0) unde cifra 1 apare
pe locul i iar, ∀j ∈ {1, ..., l}, fj = (0, ..., 0, 1, 0, ..., 0) unde cifra 1 apare pe
locul j.

Dacă T : Rk → Rl este o aplicaţie liniară atunci, ∀x = (x1, ..., xk) ∈ Rk,

(1) T (x) = T

(
k∑
i=1

xiei

)
=

k∑
i=1

xiT (ei).

∀i ∈ {1, ..., k}, T (ei) ∈ Rl şi deci T (ei) =
∑l

j=1 a
i
j · fj.

Vom nota cu AT =


a1

1 a2
1 · · · ak1

a1
2 a2

2 · · · ak2
...

... · · · ...
a1
l a2

l · · · akl


l×k

matricea cu l linii şi k coloane

formată cu elementele aij şi o vom numi matricea asociată aplicaţiei liniare
T ; observăm că această matrice nu depinde deĉıt de aplicaţia T .

Revenind ı̂n relaţia (1) obţinem

(2) T (x) =
k∑
i=1

(
l∑

j=1

aijxifj

)
=

l∑
j=1

(
k∑
i=1

aijxi

)
fj.

Să notăm cu T1, ..., Tl funcţiile scalare de coordonate ale aplicaţiei T ;
atunci din (2),

(3) Tj(x) =
k∑
i=1

aij · xi,∀j ∈ {1, ..., l},
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de unde, dacă scriem elementele din Rk şi pe cele din Rl uni-colonar, obţinem:

T (x) =


T1(x)
T2(x)

...
Tl(x)

 =


∑k

i=1 a
i
1xi∑k

i=1 a
i
2xi

...∑k
i=1 a

i
lxi

 =


a1

1 a2
1 . . . ak1

a2
1 a2

2 . . . ak2
...

... · · · ...
a1
l a2

l . . . akl

 ·


x1

x2
...
xk


şi deci ajungem la formula de reprezentare a aplicaţiei liniare T :

T (x) = AT · x, ∀x ∈ Rk.

Reciproc, orice aplicaţie T : Rk → Rl definită prin T (x) = A · x, ∀x ∈ Rk,
unde A este o matrice de tip l × k, este o aplicaţie liniară.

2.4.3 Exemple. 1). Orice aplicaţie liniară T : R → R este de forma
T (x) = a · x, ∀x ∈ R unde a ∈ R este un număr fixat. Matricea asociată lui
T este o matrice de tip 1× 1 av̂ınd ca singur element pe a.

2). Aplicaţiile liniare scalare T : Rk → R ŝınt de forma T (x) = a1 · x1 +
... + ak · xk,∀x = (x1, ..., xk) ∈ Rk unde AT = (a1, ..., ak)1×k este matricea
asociată. Observăm că ı̂n cazul particular k = 2, T−1(0R) = {x = (x1, x2) :
a1 · x1 + a2 · x2 = 0} este o dreaptă care trece prin origine. În cazul k = 3,
T−1(0R) reprezintă un plan care trece prin (0, 0, 0).

2.4.4 Propoziţie. Orice aplicaţie liniară T : Rk → Rl este funcţie lipschi-
tziană deci este funcţie uniform continuă şi deci continuă.

Demonstraţie. Vom utiliza notaţiile din relaţia (1) de mai sus; ∀x ∈ Rk,

‖T (x)‖ = ‖
k∑
i=1

xi · T (ei)‖ ≤
k∑
i=1

‖T (ei)‖ · |xi| ≤
k∑
i=1

‖T (ei)‖ · ‖x‖.

Dacă notăm L =
∑k

i=1 ‖T (ei)‖ obţinem ‖T (x)‖ ≤ L · ‖x‖,∀x ∈ Rk. Atunci,
∀x, y ∈ Rk, ‖T (x) − T (y)‖ = ‖T (x − y)‖ ≤ L · ‖x − y‖, ceea ce arată că T
este funcţie lipschitziană.

�

În teorema următoare prezentăm comportarea aplicaţiilor liniare faţă de
operaţiile uzuale.
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2.4.5 Teoremă. 1). Fie T, S : Rk → Rl două operaţii liniare; atunci:
a). T + S este operaţie liniară şi AT+S = AT + AS.
b). t · T este operaţie liniară, ∀t ∈ R şi At·T = t · AT .

2). Fie T : Rk → Rl şi S : Rl → Rm două operaţii liniare; atunci
S ◦ T : Rk → Rm este operaţie liniară şi AS◦T = As · AT .

Demonstraţie. 1). Este uşor de verificat că adunarea şi ı̂nmulţirea cu
scalari păstrează liniaritatea operaţiilor. Să ne ocupăm de matricile asociate.

∀x ∈ Rk, (T + S)(x) = T (x) + S(x) = AT · x+AS · x = (AT +AS) · x; pe
de altă parte, (T + S)(x) = AT+S · x de unde AT+S = AT + AS.

La fel demonstrăm şi b).
2). Se arată imediat că S ◦ T este operaţie liniară de la Rk la Rm.
∀x ∈ Rk, (S ◦T )(x) = S(T (x)) = AS ·T (x) = AS ·AT ·x; pe de altă parte,

(S ◦ T )(x) = AS◦T · x de unde rezultă că AS◦T = AS · AT .
�
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Diferenţiabilitatea funcţiilor de
mai multe variabile

3.1 Derivata după o direcţie

Reamintim că dacă f : A ⊆ R → R şi a ∈ Å atunci f este derivabilă ı̂n a

dacă există şi este finită limita: limx→a
f(x)− f(a)

x− a
= lim

t→0

f(a + t)− f(a)

t
;

această limită se notează cu f ′(a) şi se numeşte derivata funcţiei f ı̂n punctul
interior a.

În cazul funcţiilor de mai multe variabile această definiţie nu poate fi
adaptată fără anumite precauţii.

Să ne imaginăm interiorul unei camere ca pe o mulţime din R3 ı̂n care
avem plasată o sursă de căldură. Ne punem problema studierii variaţiei
temperaturii ı̂n punctele interioare. Este evident că apropierea de sursa de
căldură va fi marcată de o creştere a temperaturii iar depărtarea de această
sursă va ı̂nsemna o scădere a temperaturii deci că variaţia de temperatură
depinde de direcţia pe care ne deplasăm.

Să observăm ı̂nt̂ıi că, dacă a ∈ Rk şi u ∈ Rk\{0}, atunci dreapta care trece
prin a şi are direcţia u este dreapta care trece prin punctele a şi a+u; această
dreaptă este deci (a, a+u) = {(1−t)·a+t·(a+u) : t ∈ R} = {a+t·u : t ∈ R}.

Fie f : A ⊆ Rk → R şi a ∈ Å; oricare ar fi un vector u ∈ Rk \ {0}, cum
a ∈ Å,∃δ > 0 a.̂ı. a + tu ∈ A,∀t ∈ R cu |t| < δ. Într-adevăr fie r > 0 a.̂ı.

S(a, r) ⊆ A şi fie t a.̂ı. ‖a + tu− a‖ = |t| · ‖u‖ < r; atunci numărul δ =
r

‖u‖

54
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verifică cerinţa de mai sus.

-

6

s
a

A u

r
a + tu

a + δu

(−δ < t < δ)

Y
r

a− δu

ir
�

Putem deci defini funcţia g : (−δ, δ) → R, g(t) = f(a + tu),∀t ∈ (−δ, δ);
funcţia g este restricţia funcţiei f la un segment de pe dreapta ce trece prin
a şi are direcţia u. Vom spune că f are derivată ı̂n a după direcţia u dacă g
are derivată ı̂n origine. Mai precis:

3.1.1 Definiţie. Fie f : A ⊆ Rk → R, a ∈ Å şi u ∈ Rk \ {0}; dacă există

lim
t→0

f(a + tu)− f(a)

t
∈ R atunci spunem că funcţia f are derivată ı̂n a pe

direcţia u şi notăm

df

du
(a) = f ′u(a) = lim

t→0

f(a + tu)− f(a)

t
∈ R.

3.1.2 Observaţii. (i).
df

du
(a) = g′(0).

(ii). Fie v = 1
‖u‖ · u versorul asociat direcţiei u; atunci

df

du
(a) = lim

t→0

f(a + t
‖u‖ · u)− f(a)

t
‖u‖

= ‖u‖ · df

dv
(a).

3.1.3 Exemple. 1). Fie T : Rk → R un operator liniar; ∀a ∈ Rk,∀u ∈
Rk \ {0},

dT

du
(a) = lim

t→0

T (a + tu)− T (a)

t
= T (u).
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Rezultă că un operator liniar are derivată ı̂n orice punct şi după orice direcţie.
Această derivată nu depinde de punctul a ci numai de direcţia u.

2). Fie ‖ · ‖ : Rk → R aplicaţia normă pe Rk şi fie a, u ∈ Rk \ {0};

d‖ · ‖
du

(a) = lim
t→0

‖a + tu‖ − ‖a‖
t

= lim
t→0

(a + tu, a + tu)
1
2 − (a, a)

1
2

t
=

= lim
t→0

(a + tu, a + tu)− (a, a)

t(‖a + tu‖+ ‖a‖)
=

(a, u)

‖a‖
.

Pentru a = 0,
d‖ · ‖
du

(0) = lim
t→0

|t|
t

şi această limită nu există. Deci ‖ · ‖ nu

are derivată ı̂n origine pe nici-o direcţie.

Vom prezenta acum o interpretare geometrică a derivatei după o direcţie.
Fie f : A ⊆ R2 → R, a = (a1, a2) ∈ Å şi u = (u1, u2) un versor din R2;

presupunem că funcţia f are derivata
df

du
(a) ı̂n a după direcţia u.

În planul x10x2 considerăm semidreapta (d) : x = a + tu, t > 0 care
trece prin punctul a şi are direcţia u. Fie M = (a1, a2, 0) originea acestei
semidrepte şi fie N = (a1 + tu1, a2 + tu2, 0) un punct pe această semidreaptă.
Aşa cum se observă din figura următoare, punctele P = (a1, a2, f(a1, a2)) şi
R = (a1 + tu1, a2 + tu2, f(a1 + tu1, a2 + tu2)) aparţin graficului funcţiei f ,
Gf = {(x1, x2, f(x1, x2)) : (x1, x2) ∈ A}.

= ~

6
x3

P Q
R

M

q qq
q

x1 x2

0

N

Gfz

S

(d)

Fie (π) :
x1 − a1

u1

=
x2 − a2

u2

planul care conţine semidreapta (d) şi este

perpendicular pe planul x10x2. Planul (π), care ı̂n figura noastră conţine
punctele P şi R, decupează ı̂n p̂ınza Gf arcul de curbă PR = Gf ∩ (π).

Fie Q = (a1 + tu1, a2 + tu2, f(a1, a2)) proiecţia lui P pe dreapta NR. În

triunghiul PQR, dreptunghic ı̂n Q, vom nota cu αt măsura unghiului Q̂PR;

atunci tgαt =
RQ

PQ
=

f(a1 + tu1, a2 + tu2)− f(a1, a2)

t
=

f(a + tu)− f(a)

t
.
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Treĉınd la limită după t → 0, rezultă că există limt→0 αt = α0 şi că, la limită,
coarda PR tinde la tangenta ı̂n P la arcul de curbă Gf ∩ (π), tangentă care

ı̂n figura de mai sus este notată cu PS. Atunci tgα0 =
df

du
(a).

Deci, ı̂n cazul particular ı̂n care u este un versor, derivata unei funcţii
ı̂ntr-un punct după direcţia u este tangenta trigonometrică a unghiului făcut
de tangenta geometrică ı̂n punct la curba Gf ∩ (π) cu planul x10x2.

Ecuaţia acestei tangente la curbă este ecuaţia parametrică a unei drepte
ce trece prin punctul P şi are direcţia dată de vectorul (tu1, tu2, SQ) =

(tu1, tu2, PQ · tgα0) =

(
tu1, tu2, t ·

df

du
(a)

)
∈ R3 ceea ce este echivalent cu

direcţia dată de vectorul v =

(
u1, u2,

df

du
(a)

)
.

Atunci ecuaţia parametrică a tangentei ı̂n P la arcul de curbă decupat de
(π) ı̂n Gf va fi:

x = (a, f(a)) + t

(
u,

df

du
(a)

)
= (a1, a2, f(a1, a2)) + t

(
u1, u2,

df

du
(a)

)
sau, dacă scriem pe coordonate:

(Tu)


x1 = a1 + tu1

x2 = a2 + tu2

x3 = f(a1, a2) + t
df

du
(a)

, t ∈ R.

3.1.4 Propoziţie. Fie f : A ⊆ Rk → R, a ∈ Å aşa fel ı̂nĉıt f are derivată
ı̂n a după orice direcţie u ∈ Rk \ {0}; atunci operatorul T : Rk → R definit
prin

T (u) =

{
df

du
(a) , dacă u 6= 0,

0 , dacă u = 0,

este un operator omogen, adică satisface proprietatea:

T (λ · u) = λ · T (u),∀λ ∈ R,∀u ∈ Rk.

Demonstraţie. Dacă λ = 0 sau dacă u = 0 condiţia de omogenitate este
evident ı̂ndeplinită.

Fie acum λ ∈ R \ {0}, u ∈ Rk \ {0},

T (λ · u) =
df

d(λ · u)
(a) = lim

t→0

f(a + tλ · u)− f(a)

t
=
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= λ · lim
t→0

f(a + tλ · u)− f(a)

tλ
= λ · T (u).

3.1.5 Observaţie. În general, aşa cum vom remarca ı̂n exemplul 3.1.6, acest
operator nu este aditiv şi astfel nu este un operator liniar. Acest fapt se poate
interpreta geometric ı̂n cazul k = 2 ı̂n felul următor: deşi există tangente la
curbele Gf ∩πu ı̂n (a, f(a)) pe toate direcţiile u ∈ R2\{0} aceste tangente nu
ŝınt plasate ı̂ntr-un acelaşi plan şi deci nu există un plan tangent la graficul
lui f ı̂n punctul (a, f(a)).

Cazul particular ı̂n care operatorul T este liniar (caz ı̂n care vom avea şi un
plan tangent la graficul funcţiei) joacă un rol deosebit ı̂n teoria diferenţială a
funcţiilor de mai multe variabile; acest caz va fi tratat ı̂n paragraful următor.

3.1.6 Exemplu. Fie f : R2 → R definită prin

f(x, y) =


xy2

x2 + y4
, (x, y) 6= (0, 0),

0 , (x, y) = (0, 0).

Dacă (xk) ⊆ R este un şir de numere reale strict pozitive convergent la 0 şi
λ > 0, şirul ((xk,

√
λxk))k∈N ⊆ R2 este convergent la (0, 0) iar f(xk,

√
λxk) →

λ

1 + λ2
. Cum limita şirului valorilor depinde de parametru real λ rezultă că

funcţia f nu are limită ı̂n (0, 0) şi deci nu este continuă ı̂n acest punct.

Pe de altă parte, ∀(u, v) ∈ R2 \ {(0, 0)}, df

d(u, v)
(0, 0) = lim

t→0

f(t(u, v))

t
=

= lim
t→0

tu · t2v2

(t2u2 + t4v4)t
=

 v2

u
, u 6= 0,

0 , u = 0.

Deci există derivata ı̂n origine a lui f pe orice direcţie (u, v) ∈ R2 fără ca
f să fie continuă ı̂n (0, 0).

Graficul funcţiei f are tangentă ı̂n (0, 0, 0) pe orice direcţie (u, v) ∈ R2 \
{(0, 0)}; ecuaţiile parametrice ale acesteia ŝınt:

x = tu
y = tv

z = tv2

u

, t ∈ R, dacă u 6= 0 şi


x = tu
y = tv
z = 0

, t ∈ R, dacă u = 0, v 6= 0.

Operatorul T nu este liniar; ı̂ntr-adevăr T ((1, 0)) + T ((0, 1)) = 0 6= 1 =
T ((1, 1)) = T ((1, 0) + (0, 1)). Evident că tangentele ale căror ecuaţii le-am
scris mai sus nu ŝınt plasate ı̂n acelaşi plan.
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3.1.7 Teoremă (teorema de medie). Fie A ⊆ Rk o mulţime deschisă şi
fie f : A → R o funcţie care admite derivată ı̂n orice punct din A pe orice
direcţie. Oricare ar fi a, b ∈ A cu proprietatea că segmentul ı̂nchis [a, b] ⊆ A
există c ∈ [a, b] aşa fel ı̂nĉıt:

f(b)− f(a) =
df

d(b− a)
(c).

Demonstraţie. Fie deci a, b ∈ A cu proprietatea că [a, b] ⊆ A şi fie
funcţia reală de o variabilă reală g : [0, 1] → R definită prin g(t) = f(a +
t(b − a)),∀t ∈ [0, 1]; atunci g este derivabilă pe [0, 1]. Într-adevăr, x0 =
a + t0(b− a) ∈ [a, b] ⊆ A,∀t0 ∈ [0, 1], şi deci f are derivată ı̂n x0 pe direcţia

b− a. Atunci lim
t→t0

g(t)− g(t0)

t− t0
= lim

t→t0

f(a + t(b− a))− f(a + t0(b− a))

t− t0
=

= lim
t→t0

f(a + t0(b− a) + (t− t0)(b− a))− f(a + t0(b− a))

t− t0
=

= lim
s→0

f(x0 + s(b− a))− f(x0)

s
=

df

d(b− a)
(x0). Rezultă că g este derivabilă

ı̂n orice punct t ∈ [0, 1] şi g′(t) =
df

d(b− a)
(a + t(b − a)). Putem deci să

aplicăm funcţiei g teorema creşterilor finite a lui Lagrange. Există atunci un
punct θ ∈ [0, 1] a.̂ı. g(1)− g(0) = g′(θ). Fie c = a + θ(b− a) ∈ [a, b]; atunci,

ı̂nlocuind ı̂n formula de mai sus pe g, obţinem f(b)− f(a) =
df

d(b− a)
(c).

�

3.1.8 Corolar. Fie A ⊆ Rk o mulţime deschisă şi convexă; o funcţie f :
A → R care are derivata nulă ı̂n orice punct din A şi pe orice direcţie este
constantă pe A.

Demonstraţie. Într-adevăr, A fiind convexă, odată cu orice două puncte
a, b ∈ A, [a, b] ⊆ A; rezultă din teorema precedentă că f(a) = f(b).

�

Un rol important ı̂n studiul derivatelor unei funcţii ı̂l joacă derivatele
după direcţiile particulare date de vectorii bazei canonice.

3.1.9 Definiţie. Fie f : A ⊆ Rk → R şi fie a ∈ Å; ∀i ∈ {1, ..., k} fie
ei = (0, ..., 0, 1, 0, ..., 0) unde cifra 1 este plasată pe locul i. Dacă funcţia f ad-
mite derivată ı̂n punctul a pe direcţia ei atunci aceasta se numeşte derivata
parţială a funcţiei f ı̂n raport cu xi şi se notează:

df

dei

(a) =
∂f

∂xi

(a) = f ′xi
(a).
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3.1.10 Observaţii. 1). Presupunem că a = (a1, ..., ak) ∈ Å; atunci
∂f

∂xi

(a) = lim
t→0

f(a1, ..., ai−1, ai + t, ai+1, ..., ak)− f(a1, ..., ai, ..., ak)

t
=

= lim
xi→ai

f(a1, ..., ai−1, xi, ai+1, ..., ak)− f(a1, ..., ai−1, ai, ai+1, ..., ak)

xi − ai

.

Rezultă că derivata parţială ı̂n raport cu xi se obţine ca o derivată obişnuită
a funcţiei f ı̂n care fixăm celelalte variabile şi derivăm numai după xi.

2). În cazul particular k = 2 variabila curentă se notează cu (x, y) şi

atunci vom obţine două derivate parţiale ale unei funcţii:
∂f

∂x
şi

∂f

∂y
.

În cazul k = 3 avem trei derivate parţiale notate cu
∂f

∂x
,

∂f

∂y
şi respectiv

∂f

∂z
.

3.1.11 Definiţie. Să presupunem că f : A ⊆ Rk → R admite derivată
parţială ı̂n raport cu o variabilă xi ı̂n toate punctele interioare ale lui A;

dacă funcţia
∂f

∂xi

: Å → R admite derivată parţială ı̂n raport cu variabila xj

ı̂n punctul a ∈ Å atunci
∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj∂xi

se numeşte derivată parţială

de ordin doi. Această derivată se numeşte mixtă dacă i 6= j. În cazul i = j

ea se notează cu
∂2f

∂x2
i

.

3.1.12 Observaţii. 1). Trebuie să atragem atenţia asupra scrierii derivate-

lor parţiale mixte
∂2f

∂xj∂xi

; ordinea de la numitor ∂xj∂xi ı̂nseamnă că prima

derivare s-a făcut după xi iar a doua după xj. Este important de reţinut că,

ı̂n general, derivatele mixte nu ŝınt egale:
∂2f

∂xj∂xi

6= ∂2f

∂xi∂xj

. Astfel o funcţie

de k variabile poate avea k2 derivate parţiale de ordin doi.
2). În cazul k = 2 putem avea următoarele derivate parţiale de ordin doi:

∂2f

∂x2
,

∂2f

∂x∂y
,

∂2f

∂y∂x
şi

∂2f

∂y2
.

În cazul k = 3 avem derivatele de ordin doi:

∂2f

∂x2
,

∂2f

∂y∂x
,

∂2f

∂z∂x
,

∂2f

∂x∂y
,
∂2f

∂y2
,

∂2f

∂z∂y
,

∂2f

∂x∂z
,

∂2f

∂y∂z
şi

∂2f

∂z2
.

Aşa cum vom remarca ı̂n exemplul următor, o funcţie care are derivată
ı̂ntr-un punct după toate direcţiile nu este neapărat continuă.
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Diferenţiabilitatea funcţiilor de
mai multe variabile

3.2 Diferenţiala

Rezultă din exemplul 3.1.6 că noţiunea de derivată după o direcţie nu este
cel mai bun substitut multi-dimensional pentru derivatele funcţiilor reale de
o variabilă. Vom introduce, ca şi pentru funcţii de o variabilă, noţiunea de
funcţie diferenţiabilă de mai multe variabile.

3.2.1 Definiţie. Funcţia f : A ⊆ Rk → R este diferenţiabilă ı̂n punctul
a ∈ Å dacă există un operator liniar T : Rk → R şi o funcţie α : A → R
continuă şi nulă ı̂n a

(
lim
x→a

α(x) = α(a) = 0
)

a.̂ı.

(D) f(x) = f(a) + T (x− a) + α(x) · ‖x− a‖,∀x ∈ A.

Dacă f este diferenţiabilă ı̂n a spunem că T este diferenţiala funcţiei f ı̂n
a şi notăm aceasta cu df(a) = T .

3.2.2 Observaţii. 1). Condiţia de diferenţiabilitate este o condiţie locală;
astfel este suficient ca să existe operatorul liniar T : Rk → R şi o funcţie α
definită pe o vecinătate V ⊆ A a lui a, continuă şi nulă ı̂n a, pentru care
relaţia (D) să fie verificată. Într-adevăr, ı̂n această situaţie putem defini

ᾱ : A → R prin ᾱ(x) =

 α(x) , x ∈ V,
f(x)− f(a)− T (x− a)

‖x− a‖
, x ∈ A \ V

aşa fel

61
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ı̂nĉıt relaţia (D) este verificată cu ᾱ pe toată mulţimea A şi este evident că
ᾱ este continuă şi nulă ı̂n a.

2). Diferenţiala unei funcţii de mai multe variabile este un operator liniar,
deci o funcţie. Apel̂ınd la reprezentarea operatorilor liniari de la Rk la R (vezi
exemplul 2.4.3, 2).), ∃d = (d1, ..., dk) ∈ Rk a.̂ı., ∀h = (h1, ..., hk) ∈ Rk,

df(a)(h) = T (h) = AT · h = (d1, ..., dk) ·

h1
...

hk

 = d1h1 + ... + dkhk = (d, h).

3). Dacă T : Rk → R este un operator liniar şi a ∈ Rk putem scrie:
T (x) = T (a) + T (x − a) + 0 · ‖x − a‖,∀x ∈ Rk. Concluzia este că T este
diferenţiabil ı̂n toate punctele lui Rk şi diferenţiala sa dfT (a) = T este aceeaşi
ı̂n toate punctele a ∈ Rk.

3.2.3 Teoremă. Fie f : A ⊆ Rk → R şi a = (a1, ..., ak) ∈ Å; atunci
următoarele afirmaţii ŝınt echivalente:

(i) f este diferenţiabilă ı̂n a.
(ii) ∃d ∈ Rk,∃β : A ⊆ Rk → Rk o funcţie continuă şi nulă ı̂n a a.̂ı.:

f(x) = f(a) + (d, x− a) + (β(x), x− a),∀x ∈ A.

Demonstraţie.
(i) =⇒ (ii): Presupunem că f este diferenţiabilă ı̂n a şi fie T : Rk → R

un operator liniar şi α : A → R continuă şi nulă ı̂n a a.̂ı.

(D) f(x) = f(a) + T (x− a) + α(x) · ‖x− a‖,∀x ∈ A.

Atunci există d ∈ Rk a.̂ı. T (h) = (d, h),∀h ∈ Rk (vezi observaţia 3.2.2, 2).).
Fie β : A → Rk definită prin:

β(x) =


α(x)

‖x− a‖
· (x− a) , x 6= a

(0, ..., 0) , x = a
,∀x ∈ A.

Atunci ‖β(x)‖ =
|α(x)|
‖x− a‖

· ‖x − a‖ = |α(x)| → 0, deci β : A → Rk este o

funcţie continuă şi nulă ı̂n a.

Deoarece (β(x), x− a) =
α(x)

‖x− a‖
· (x− a, x− a) = α(x) · ‖x− a‖, atunci

relaţia (D) ne conduce la (ii).
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(ii) =⇒ (i): Din (ii) rezultă că putem construi operatorul liniar T : Rk →
R definit prin T (h) = (d, h),∀h ∈ Rk.

Fie funcţia α : A → R definită prin

α(x) =

{ 1
‖x−a‖ · (β(x), x− a) , x 6= a,

0 , x = a.

Remarcăm atunci că este verificată relaţia (D).
Folosind inegalitatea lui Cauchy (vezi ultima inegalitate din propoziţia

1.1.18), obţinem:

|α(x)| ≤ 1

‖x− a‖
· ‖β(x)‖ · ‖x− a‖,∀x 6= a

de unde rezultă că limx→a α(x) = 0 şi deci funcţia f este diferenţiabilă ı̂n a.

�

3.2.4 Teoremă. Fie f : A ⊆ Rk → R o funcţie diferenţiabilă ı̂n a ∈ Å;
atunci:

1). f este continuă ı̂n a.
2). Oricare ar fi u ∈ Rk \ {0} f are derivată ı̂n a după direcţia u şi

df

du
(a) = (df(a))(u).

Demonstraţie. Fie operatorul liniar T : Rk → R şi funcţia α : A → R
continuă şi nulă ı̂n a a.̂ı.

(D) f(x) = f(a) + T (x− a) + α(x) · ‖x− a‖,∀x ∈ A.

1). Deoarece orice operator liniar este funcţie lipschitziană, deci uniform
continuă şi deci continuă pe Rk (propoziţia 2.4.4), din relaţia (D) obţinem:
limx→a(f(x)− f(a)) = limx→a T (x− a) + limx→a α(x) · ‖x− a‖ = 0. Rezultă
că f este continuă ı̂n a.

2). Oricare ar fi u ∈ Rk \ {0} există δ > 0 a.̂ı. oricare ar fi t ∈ R cu
|t| < δ, a + tu ∈ A; din relaţia (D) obţinem atunci

lim
t→0

f(a + tu)− f(a)

t
= lim

t→0

T (tu) + α(a + tu) · ‖tu‖
t

=

= lim
t→0

(
T (u) +

|t|
t
· α(a + tu) · ‖u‖

)
= T (u).

Deoarece T este diferenţiala funcţiei f ı̂n a rezultă că
df

du
(a) = (df(a))(u).

�
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3.2.5 Observaţie. Funcţia din exemplul 3.1.6 are derivată ı̂n origine după
orice direcţie (u, v) ∈ R2 ı̂nsă această derivată nu este funcţie liniară de (u, v)
şi deci f nu este diferenţiabilă ı̂n (0, 0).

3.2.6 Corolar. Dacă f : A ⊆ Rk → R este diferenţiabilă ı̂n a ∈ Å atunci
f are derivate parţiale ı̂n a ı̂n raport cu oricare variabilă xi şi

∂f

∂xi

(a) = (df(a))(ei),∀i = 1, ..., k.

3.2.7 Observaţii. 1). Fie f : A ⊆ Rk → R o funcţie diferenţiabilă ı̂n a ∈ Å
şi fie T = df(a); atunci ∃d = (d1, ..., dk) ∈ Rk a.̂ı. T (h) = (d, h),∀h ∈ Rk.
Rezultă că T (ei) = (d, ei) = di,∀i = 1, ..., k. Din corolarul precedent obţinem

că di =
∂f

∂xi

(a),∀i = 1, ..., k. Atunci matricea de reprezentare a operatorului

liniar T este AT =

(
∂f

∂x1

(a), ...,
∂f

∂xk

(a)

)
1×k

. Această matrice se mai notează

cu ∇f(a) şi se numeşte gradientul lui f ı̂n a. Rezultă atunci că diferenţiala
lui f ı̂n a se reprezintă prin:

df(a)(h) =
∂f

∂x1

(a)h1 + ... +
∂f

∂xk

(a)hk = (∇f(a), h) ,∀h = (h1, ..., hk) ∈ Rk.

2). Dacă o funcţie este diferenţiabilă ı̂ntr-un punct atunci diferenţiala
ei este unică; ı̂ntr-adevăr, din observaţia precedentă, diferenţiala este unic
determinată de derivatele parţiale ale funcţiei.

3). Definim ∀i = 1, ..., k, funcţiile fi : Rk → R prin fi(x) = (x, ei) =
xi,∀x = (x1, ..., xk) ∈ Rk. Atunci fiecare fi este un operator liniar şi deci
este diferenţiabil ı̂n orice punct iar dfi(a) = fi ı̂n orice punct a ∈ Rk (vezi
observaţia 3.2.2, 3).). Vom conveni să notăm dfi(a) = dxi,∀i = 1, ..., k şi
atunci dxi(h) = hi,∀i = 1, ..., k.

Atunci diferenţiala unei funcţii f : A ⊆ Rk → R ı̂ntr-un punct interior al
mulţimii A se va scrie:

df(a)(h) =
∂f

∂x1

(a)dx1(h) + ... +
∂f

∂xk

(a)dxk(h),∀h ∈ Rk

sau, dacă o scriem funcţional,

df(a) =
∂f

∂x1

(a)dx1 + ... +
∂f

∂xk

(a)dxk.
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4). În teorema 3.2.4 am remarcat că o funcţie f diferenţiabilă ı̂ntr-un
punct a interior mulţimii sale de definiţie A ⊆ Rk admite derivată după orice
direcţie u ∈ Rk \ {0}. Utiliẑınd observaţiile de mai sus putem scrie:

df

du
(a) =

k∑
i=1

∂f

∂xi

(a)ui = (∇f(a), u) = ‖∇f(a)‖ · ‖u‖ · cos θ

unde θ este unghiul dintre vectorul gradient∇f(a) şi vectorul direcţie u ∈ Rk.

Vom prezenta acum o interpretare geometrică a diferenţialei unei funcţii
de două variabile.

Fie f : A ⊆ R2 → R şi a = (a1, a2) ∈ Å; presupunem că funcţia f este
diferenţiabilă ı̂n a; atunci după corolarul 3.2.4, f are derivată ı̂n a după orice

versor u = (u1, u2) ∈ R2 \ {0} şi
df

du
(a) = df(a)(u)

Ca şi atunci ĉınd am prezentat o interpretare geometrică a derivatei după
o direcţie, vom considera ı̂n planul x10x2 semidreapta (d) : x = a + tu, t > 0
care trece prin punctul a şi are direcţia u.

Fie (π) :
x1 − a1

u1

=
x2 − a2

u2

planul care conţine această semidreaptă şi

este perpendicular pe planul x10x2. Planul (π) decupează ı̂n p̂ınza Gf un
arc de curbă care pleacă din punctul P = (a1, a2, f(a1, a2)) ∈ Gf şi care
este plasat pe Gf . Aşa cum am observat, există tangenta la acest arc de

curbă şi are direcţia dată de vectorul v =

(
u1, u2,

df

du
(a)

)
. Deoarece funcţia

este diferenţiabilă ı̂n a,
df

du
(a) variază liniar cu u (corolarul 3.2.4) şi atunci

direcţiile v se plasează pe un plan ĉınd vectorul u parcurge versorii lui R2.

Într-adevăr, ı̂n acest caz: v =

(
u1, u2,

∂f

∂x1

(a) · u1 +
∂f

∂x2

(a) · u2

)
=

= u1 ·
(

1, 0,
∂f

∂x1

(a)

)
+ u2 ·

(
0, 1,

∂f

∂x2

(a)

)
+ (1 − u1 − u2) · (0, 0, 0), adică

v descrie un plan care trece prin origine şi prin punctele

(
1, 0,

∂f

∂x1

(a)

)
şi(

0, 1,
∂f

∂x2

(a)

)
.
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Dacă eliminăm parametrii u1 şi u2 din ecuaţia parametrică a acestui plan
obţinem ecuaţia sa explicită

(∆) x3 = df(a)(x1, x2) =
∂f

∂x1

(a) · x1 +
∂f

∂x2

(a) · x2.

Deoarece direcţiile tangentelor ı̂n P la arcele de curbă de pe graficul lui f
(după toate direcţiile u posibile) ŝınt coplanare, aceste tangente ŝınt şi ele
coplanare şi generează planul tangent la suprafaţa Gf ı̂n punctul P .

Rezultă că dacă o funcţie f este diferenţiabilă ı̂ntr-un punct a atunci
graficul său admite un plan tangent ı̂n punctul (a, f(a)) şi acesta este paralel
cu planul (∆) : x3 = df(a)(x1, x2).

Ecuaţia planului tangent ı̂n P se obţine prin translaţia planului (∆) cu
vectorul (a1, a2, f(a1, a2)) ceea ce ne conduce la ecuaţiile parametrice:

x1 = a1 + u1

x2 = a2 + u2

x3 = f(a1, a2) +
∂f

∂x1

(a) · u1 +
∂f

∂x2

(a) · u2

, u1, u2 ∈ R

Dacă eliminăm parametrii obţinem ecuaţia explicită a acestui plan tangent:

(T ) x3 − f(a1, a2) =
∂f

∂x1

(a) · (x1 − a1) +
∂f

∂x2

(a) · (x2 − a2).

Aşa cum am observat, existenţa derivatelor parţiale ale unei funcţii (chiar
existenţa derivatelor după toate direcţiile) ı̂ntr-un punct nu antrenează dife-
renţiabilitatea funcţiei. Putem totuşi formula o condiţie suficientă de dife-
renţiabilitate ı̂n limbajul derivatelor parţiale.

3.2.8 Teoremă (criteriul de diferenţiabilitate). Fie f : A ⊆ Rk → R, a ∈ Å
şi r > 0 a.̂ı. sfera deschisă S(a, r) ⊆ A. Dacă f admite derivate parţiale
ı̂n raport cu toate variabilele ı̂n toate punctele sferei S(a, r) şi acestea ŝınt
continue ı̂n a atunci f este diferenţiabilă ı̂n a.

Demonstraţie. Vom face demonstraţia ı̂n cazul particular k = 2; ı̂n cazul
general demonstraţia nu comportă deĉıt dificultăţi de scriere.

Presupunem deci că f : A ⊆ R2 → R, (a, b) ∈ Å şi S((a, b), r) ⊆ A; de

asemenea presupunem că există
∂f

∂x
,
∂f

∂y
: S(a, r) → R şi că

(1) lim
(x,y)→(a,b)

∂f

∂x
(x, y) =

∂f

∂x
(a, b) şi lim

(x,y)→(a,b)

∂f

∂y
(x, y) =

∂f

∂y
(a, b).
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Fie (x, y) ∈ S((a, b), r) \ {(a, b)} un punct fixat pentru moment; atunci:

(2) f(x, y)− f(a, b) = [f(x, y)− f(x, b)] + [f(x, b)− f(a, b)].

Funcţia de o variabilă g = f(x, ·) : [b, y] → R este derivabilă pe [b, y] şi

g′(t) =
∂f

∂y
(x, t),∀t ∈ [b, y]. Atunci putem să aplicăm acestei funcţii teorema

lui Lagrange; deci există d(x, y) ∈]b, y[ a.̂ı.

(3) f(x, y)− f(x, b) =
∂f

∂y
(x, d(x, y)) · (y − b).

Schiţăm mai jos poziţia punctelor care apar ı̂n demonstraţie.

6

-
ar

q
qr

x

y

0

(a, b)

(x, y)

K

(c(x), b)

w

(x, d(x, y))

rs

(x, b)

În mod asemănător considerăm funcţia de o variabilă h = f(·, b) : [x, a] → R;

h este derivabilă pe [x, a] şi h′(t) =
∂f

∂x
(t, b),∀t ∈ [x, a]. Deci există c(x) ∈

]x, a[ a.̂ı.

(4) f(x, b)− f(a, b) =
∂f

∂x
(c(x), b) · (x− a).

Înlocuind (3) şi (4) ı̂n (2) obţinem:

f(x, y)− f(a, b) =
∂f

∂x
(c(x), b) · (x− a) +

∂f

∂y
(x, d(x, y)) · (y − b) =

=
∂f

∂x
(a, b) · (x− a) +

∂f

∂y
(a, b)) · (y − b)+

+

[
∂f

∂x
(c(x), b)− ∂f

∂x
(a, b)

]
· (x− a) +

[
∂f

∂y
(x, d(x, y))− ∂f

∂y
(a, b)

]
· (y − b).
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Deoarece (x, y) este arbitrar ı̂n S((a, b), r) \ {(a, b)}, putem defini acum:

β1(x, y) =

{
∂f

∂x
(c(x), b)− ∂f

∂x
(a, b) , (x, y) 6= (a, b)

0 , (x, y) = (a, b)
şi

β2(x, y) =


∂f

∂y
(x, d(x, y))− ∂f

∂y
(a, b) , (x, y) 6= (a, b)

0 , (x, y) = (a, b)
.

Astfel există d =

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)
∈ R2 şi o funcţie vectorială

β : S((a, b), r) → R2, β = (β1, β2) a.̂ı., ∀(x, y) ∈ S((a, b), r),

f(x, y) = f(a, b) + (d, (x− a, y − b)) + (β(x, y), (x− a, y − b)).

Aşa cum am remarcat ı̂n observaţia 3.2.2, 1)., condiţia de diferenţiabilitate
este locală; deci este suficient ca relaţia de mai sus să fie verificată pe o
vecinătate a lui (a, b).

Atunci este suficient să demonstrăm că β este continuă ı̂n (a, b) pentru
ca să rezulte, din teorema 3.2.3, (ii), că f este diferenţiabilă ı̂n (a, b).

Din (1), ∀ε > 0,∃δ > 0, δ < r a.̂ı. ∀(x, y) ∈ S((a, b), δ),

(5)

∣∣∣∣∂f

∂x
(x, y)− ∂f

∂x
(a, b)

∣∣∣∣ < ε

şi

(6)

∣∣∣∣∂f

∂x
(x, y)− ∂f

∂x
(a, b)

∣∣∣∣ < ε.

Dar ∀(x, y) ∈ S((a, b), δ), (c(x), b) ∈ S((a, b), δ) şi (x, d(x, y)) ∈ S((a, b), δ).
Rezultă atunci din definiţia funcţiilor β1 şi β2 şi din relaţiile (5) şi (6) că

|β1(x, y)− β1(a, b)| < ε şi |β2(x, y)− β2(a, b)| < ε,

ceea ce arată că lim(x,y)→(a,b) β1(x, y) = β1(a, b) = 0 şi lim(x,y)→(a,b) β2(x, y) =
β2(a, b) = 0.

�

Criteriul de diferenţiabilitate din teorema precedentă sugerează introdu-
cerea unei clase importante de funcţii diferenţiabile.
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3.2.9 Definiţie. Fie D ⊆ Rk o mulţime deschisă; spunem că o funcţie
f : D → R este de clasă C1 pe D sau că f ∈ C1(D) dacă toate derivatele
parţiale ale lui f există şi ŝınt continue ı̂n toate punctele mulţimii D.

Utiliẑınd criteriul de diferenţiabilitate din teorema 3.2.8, obţinem:

3.2.10 Corolar. O funcţie de clasă C1 pe D este diferenţiabilă ı̂n toate
punctele mulţimii D.



Capitolul 3

Diferenţiabilitatea funcţiilor de
mai multe variabile

3.2 Diferenţiala

Diferenţiabilitatea funcţiilor vectoriale

Să considerăm acum pe r̂ınd conceptele de derivată după o direcţie, dife-
renţiabilitate şi diferenţială pentru funcţiile vectoriale. Aceasta oferă un bun
prilej de reluare şi de fixare a noţiunilor şi rezultatelor deja prezentate pentru
funcţiile scalare.

Derivata după o direcţie

3.2.11 Definiţie. Fie f : A ⊆ Rk → Rl, a ∈ Å şi u ∈ Rk \ {0}; spunem că
f are derivată ı̂n a după direcţia u dacă există

df

du
(a) = lim

t→0

1

t
[f(a + tu)− f(a)] ∈ Rl.

Expresia din paranteza pătrată de mai sus este un vector iar fracţia din
faţă este un scalar; vom conveni totuşi, pentru asemănarea cu cazul scalar,

să scriem
df

du
(a) = lim

t→0

f(a + tu)− f(a)

t
.

3.2.12 Observaţii. 1). Dacă (f1, ..., fl) ŝınt funcţiile scalare de coordo-
nate ale lui f atunci, din teorema 2.2.3 ştim că limita funcţiei vectoriale

70
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f(a + tu)− f(a)

t
există dacă şi numai dacă, ∀j ∈ {1, ..., l}, există limita

funcţiei scalare
fj(a + tu)− fj(a)

t
, pentru t → 0, deci dacă şi numai dacă fj

are derivată ı̂n a după direcţia u şi ı̂n plus:

df

du
(a) =


df1

du
(a)

...
dfl

du
(a)

 .

2). În cazul particular ĉınd u = ei, i = 1, ..., k, obţinem

df

dei

(a) =


df1

dei

(a)

...
dfl

dei

(a)

 =


∂f1

∂xi

(a)

...
∂fl

∂xi

(a)


3). Dacă k = 1 atunci ∀j = 1, ..., l,

dfj

de1

(a) = lim
t→0

fj(a + t)− fj(a)

t
= f ′j(a) şi deci

df

de1

(a) =

f ′1(a)
...

f ′l (a)

.

În acest caz vom conveni să spunem că funcţia f este derivabilă ı̂n a; notăm

f ′(a) =
df

de1

(a) =

f ′1(a)
...

f ′l (a)

 ∈ Rl şi o numim derivata funcţiei f ı̂n a.

3.2.13 Definiţie. Să presupunem că funcţia vectorială f are derivate după
toţi vectorii bazei canonice {e1, ..., ek} ı̂n a; atunci matricea

Jf (a) =


∂f1

∂x1

(a) . . .
∂f1

∂xk

(a)

...
. . .

...
∂fl

∂x1

(a) . . .
∂fl

∂xk

(a)


l×k

se numeşte matricea jacobiană ataşată funcţiei f ı̂n punctul a (numele
este dat ı̂n onoarea matematicianului german Carl Jacobi).
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În cazul particular l = k această matrice este pătratică; determinantul
asociat ei

detJf (a) =
D(f1, ..., fk)

D(x1, ..., xk)
(a) =

∣∣∣∣∣∣∣∣∣∣

∂f1

∂x1

(a) . . .
∂f1

∂xk

(a)

...
. . .

...
∂fk

∂x1

(a) . . .
∂fk

∂xk

(a)

∣∣∣∣∣∣∣∣∣∣
se numeşte determinantul funcţional sau jacobianul lui f ı̂n a.

Este evident că, şi pentru funcţiile vectoriale, existenţa derivatelor după orice
direcţie ı̂ntr-un punct nu va antrena, ı̂n general, continuitatea.

Diferenţiabilitatea

3.2.14 Definiţie. O funcţie f : A ⊆ Rk → Rl este diferenţiabilă ı̂n a ∈ Å
dacă există un operator liniar T : Rk → Rl şi o funcţie α : A → Rl continuă
şi nulă ı̂n a a.̂ı.

(D) f(x) = f(a) + T (x− a) + ‖x− a‖ · α(x),∀x ∈ A.

Operatorul T se numeşte diferenţiala lui f ı̂n a şi se notează df(a) = T .

3.2.15 Observaţii. 1). Relaţia (D) de mai sus este vectorială (o relaţie
ı̂ntre vectori din Rl).

2). Funcţia f este diferenţiabilă ı̂n a dacă şi numai dacă există un operator

liniar T : Rk → Rl a.̂ı. limx→a
f(x)− f(a)− T (x− a)

‖x− a‖
= 0.

Dacă ı̂n relaţia (D) egalăm componentele vectorilor din cei doi membri
obţinem:

3.2.16 Teoremă. Funcţia f : A ⊆ Rk → Rl, f = (f1, ..., fl), este diferenţi-
abilă ı̂n a ∈ Å dacă şi numai dacă, ∀j ∈ {1, ..., l}, fj este diferenţiabilă ı̂n a
şi

df(a)(h) =

df1(a)(h)
...

dfl(a)(h)

 =



k∑
i=1

∂f1

∂xi

(a)hi

...
k∑

i=1

∂fl

∂xi

(a)hi


=
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=


∂f1

∂x1

(a) . . .
∂f1

∂xk

(a)

...
. . .

...
∂fl

∂x1

(a) . . .
∂fl

∂xk

(a)


l×k

·

h1
...

hk


k×1

= Jf (a) · h,∀h ∈ Rk.

3.2.17 Observaţii. 1). Matricea jacobiană a funcţiei f ı̂n a este chiar ma-
tricea asociată diferenţialei lui f ı̂n a (diferenţială privită ca operator liniar).
Rezultă că diferenţiabilitatea ı̂ntr-un punct antrenează existenţa matricii ja-
cobiene ı̂n acel punct.

2). Dacă k = 1 atunci f : A ⊆ R → Rl, f = (f1, ..., fl) este diferenţiabilă
ı̂n a ∈ Å dacă şi numai dacă, ∀j = 1, ..., l, fj : A ⊆ R → R este diferenţiabilă
ı̂n a deci dacă şi numai dacă fj este derivabilă ı̂n a şi

df(a)(h) =

f ′1(a)
...

f ′l (a)

 · h,∀h ∈ R.

Rezultă că, ı̂n acest caz, f este diferenţiabilă ı̂n a dacă şi numai dacă f
este derivabilă ı̂n a şi df(a)(h) = f ′(a) ·h,∀h ∈ R (vezi observaţia 3.2.12, 3)).

În cazul k > 1 existenţa matricii jacobiene ı̂ntr-un punct nu antrenează,
ı̂n general, diferenţiabilitatea ı̂n acel punct; totuşi ţin̂ınd cont de teorema
de mai sus şi de criteriul scalar de diferenţiabilitate, putem obţine varianta
vectorială a acestui criteriu.

3.2.18 Teoremă (criteriul de diferenţiabilitate). Fie f : A ⊆ Rk → Rl şi
a ∈ Å; dacă matricea jacobiană a lui f există pe o vecinătate a lui a şi este
continuă ı̂n a (toate derivatele parţiale care formează această matrice ŝınt
continue ı̂n a) atunci f este diferenţiabilă ı̂n a.

3.2.19 Definiţie. O funcţie vectorială f definită pe o mulţime deschisă
D ⊆ Rk este de clasă C1 pe D, sau f ∈ C1(D), dacă matricea jacobiană a
funcţiei f există şi este continuă ı̂n toate punctele lui D.

3.2.20 Corolar. O funcţie vectorială de clasă C1 pe mulţimea deschisă
D ⊆ Rk este diferenţiabilă ı̂n toate punctele lui D.



74 Capitolul 3. Diferenţiabilitatea funcţiilor

3.2.21 Exemple. 1). Fie f : [0, +∞[×[0, 2π[→ R2, definită prin f(r, u) =
(r cos u, r sin u),∀(r, u) ∈ [0, +∞[×[0, 2π[;f reprezintă trecerea de la coordo-
natele polare la cele carteziene ı̂n plan; f este diferenţiabilă pe ]0, +∞[×]0, 2π[.

Matricea jacobiană a lui f este Jf =

(
cos u −r sin u
sin u r cos u

)
, jacobianul lui f este

detJf = r iar diferenţiala lui f ı̂ntr-un punct (r, u) va fi:

df(r, u) =

(
cos u · dr − r sin u · du
sin u · dr + r cos u · du

)
.

2). Trecerea de la coordonatele polare la cele carteziene ı̂n spaţiu este
dată de funcţia f : [0, +∞[×[0, 2π[×[−π

2
, +π

2
] → R3,

f(r, u, v) = (r cos u cos v, r sin u cos v, r sin v),
∀(r, u, v) ∈ [0, +∞[×[0, 2π[×[−π

2
, +π

2
]

f este o funcţie diferenţiabilă pe ]0, +∞[×]0, 2π[×] − π
2
, +π

2
[. Matricea

jacobiană a lui f este Jf =

cos u cos v −r sin u cos v −r cos u sin v
sin u cos v r cos u cos v −r sin u sin v

sin v 0 r cos v

.

Jacobianul transformării este detJf = r2 cos v. Diferenţiala funcţiei f este

df(r, u, v) =

cos u cos v · dr − r sin u cos v · du− r cos u sin v · dv
sin u cos v · dr + r cos u cos v · du− r sin u sin v · dv

sin v · dr + r cos v · dv

 .

Operaţii cu funcţii diferenţiabile

3.2.22 Teoremă. Fie f, g : A ⊆ Rk → Rl două funcţii diferenţiabile ı̂n
a ∈ Å; atunci:

1). f + g este diferenţiabilă ı̂n a şi d(f + g)(a) = df(a) + dg(a).
2). t · f este diferenţiabilă ı̂n a şi d(t · f)(a) = t · df(a).
3). (f, g) : A → R este diferenţiabilă ı̂n a şi

d(f, g)(a) = (df(a), g(a)) + (f(a), dg(a)).

Demonstraţie. Fie T = df(a) : Rk → Rl diferenţiala lui f ı̂n a şi S =
dg(a) : Rk → Rl diferenţiala lui g ı̂n a; T şi S ŝınt operatori liniari. Fie
α : A → Rl şi β : A → Rl două funcţii continue şi nule ı̂n a a.̂ı.:

(Df ) f(x) = f(a) + T (x− a) + ‖x− a‖ · α(x),∀x ∈ A.
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(Dg) g(x) = g(a) + S(x− a) + ‖x− a‖ · β(x),∀x ∈ A.

Atunci (f +g)(x) = (f +g)(a)+(T +S)(x−a)+‖x−a‖ · (α+β)(x),∀x ∈ A.
Deoarece T + S este operator liniar iar funcţia α + β este continuă şi nulă
ı̂n a rezultă că f + g este diferenţiabilă ı̂n a şi că d(f + g)(a) = T + S =
df(a) + dg(a).

La fel se demonstrează şi 2).
3). Din (Df ) şi (Dg) obţinem, ∀x ∈ A \ {a},

(f(x), g(x)) = (f(a), g(a))+(f(a), S(x−a))+(T (x−a), g(a))+γ(x) ·‖x−a‖,

unde

γ(x) = (f(a), β(x)) +
1

‖x− a‖
· (T (x− a), S(x− a)) + (T (x− a), β(x))+

+(α(x), g(a)) + (α(x), S(x− a)) + (α(x), β(x)) · ‖x− a‖.
Definim γ(a) = 0 şi atunci γ : A → R.

Fie R : Rk → R, R(h) = (f(a), S(h)) + (T (h), g(a)); atunci R este opera-
tor liniar şi

(f, g)(x) = (f, g)(a) + R(x− a) + γ(x) · ‖x− a‖,∀x ∈ A.

Rămı̂ne să demonstrăm că γ este continuă ı̂n a. ∀x ∈ A \ {a},

|γ(x)| ≤ ‖f(a)‖·‖β(x)‖+ 1

‖x− a‖
·‖T (x−a)‖·‖S(x−a)‖+‖T (x−a)‖·‖β(x)‖+

+‖α(x)‖ · ‖g(a)‖+ ‖α(x)‖ · ‖S(x− a)‖+ ‖α(x)‖ · ‖β(x)‖ · ‖x− a‖
În propoziţia 2.4.4 am arătat că orice operaţie liniară este lipschitziană; fie
deci LT , LS > 0 a.̂ı. ‖T (x− a)‖ ≤ LT · ‖x− a‖ şi ‖S(x− a)‖ ≤ LS · ‖x− a‖.

Deoarece α şi β ŝınt funcţii continue şi nule ı̂n a, limx→a ‖α(x)‖ = ‖α(a)‖ =
0 şi limx→a ‖β(x)‖ = ‖β(a)‖ = 0. Rezultă imediat că limx→a γ(x) = 0 = γ(a)
ceea ce arată că (f, g) este diferenţiabilă ı̂n a.

d(f, g)(a) = R = (f(a), S) + (T, g(a)) = (f(a), dg(a)) + (df(a), g(a)).
�

3.2.23 Teoremă. Fie f : A ⊆ Rk → Rl şi g : B ⊆ Rl → Rm a.̂ı. f(A) ⊆ B;
dacă f este diferenţiabilă ı̂n a ∈ Å iar g este diferenţiabilă ı̂n b = f(a) ∈ B̊
atunci g ◦ f : A → Rm este diferenţiabilă ı̂n a şi

d(g ◦ f)(a) = [dg(f(a))] ◦ df(a).
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Demonstraţie. Fie T : Rk → Rl, S : Rl → Rm operatori liniari a.̂ı. df(a) =
T şi dg(f(a)) = S; fie α : A → Rl continuă şi nulă ı̂n a şi β : B → Rm

continuă şi nulă ı̂n b = f(a) a.̂ı.

(1) f(x) = f(a) + T (x− a) + ‖x− a‖ · α(x),∀x ∈ A,

(2) g(y) = g(b) + S(y − b) + ‖y − b‖ · β(y),∀y ∈ B,

∀x ∈ A, y = f(x) ∈ B şi atunci, din (2),

(3) g(f(x)) = g(f(a)) + S(f(x)− f(a)) + ‖f(x)− f(a)‖ · β(f(x)).

În (3) ı̂nlocuim f(x)− f(a) cu valoarea sa obţinută din (1) şi ţinem cont
de liniaritatea lui S; atunci, ∀x ∈ A \ {a},

(4) g(f(x)) = g(f(a)) + S [T (x− a) + ‖x− a‖ · α(x)] +

+ ‖T (x− a) + ‖x− a‖ · α(x)‖ · β(f(x)) = g(f(a)) + S(T (x− a))+

+‖x− a‖ ·
(

S(α(x)) +

∥∥∥∥ 1

‖x− a‖
· T (x− a) + α(x)

∥∥∥∥ · β(f(x))

)
.

Fie atunci γ : A → Rm definită prin

γ(x) =

 S(α(x)) +

∥∥∥∥ 1

‖x− a‖
· T (x− a) + α(x)

∥∥∥∥ · β(f(x)) , x 6= a

0 , x = a

Atunci (4) se scrie

(g ◦ f)(x) = (g ◦ f)(a) + (S ◦ T )(x− a) + ‖x− a‖ · γ(x),∀x ∈ A.

Cum S ◦ T : Rk → Rm este operator liniar, pentru a demonstra că g ◦ f este
diferenţiabilă ı̂n a, este suficient să arătăm că γ este continuă ı̂n a.

Deoarece α este continuă şi nulă ı̂n a iar S este continuu pe Rl (propoziţia
2.4.4) şi se anulează ı̂n 0 rezultă că

(5) lim
x→a

S(α(x)) = 0.
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Utiliẑınd iar propoziţia 2.4.4, rezultă că T este lipschitzian; există deci
L > 0 a.̂ı. ‖T (x− a)‖ = ‖T (x)− T (a)‖ ≤ L · ‖x− a‖,∀x ∈ A. Atunci

(6)

∥∥∥∥ 1

‖x− a‖
· T (x− a) + α(x)

∥∥∥∥ · ‖β(f(x))‖ ≤ (L + ‖α(x)‖) · ‖β(f(x))‖.

Funcţia f este diferenţiabilă ı̂n a şi deci este continuă ı̂n a (corolarul 3.2.4,
1).); deoarece β este continuă şi nulă ı̂n b = f(a), rezultă că

(7) lim
x→a

β(f(x)) = β(f(a)) = 0.

Atunci, din (5), (6) şi (7) rezultă că limx→a γ(x) = 0 = γ(a).
�

3.2.24 Corolar. În ipotezele teoremei precedente

Jg◦f (a) = Jg(f(a)) · Jf (a).

Demonstraţie.
Din teorema 3.2.16 ştim că d(g ◦ f)(a)(h) = Jg◦f (a) · h,∀h ∈ Rk.
Din teorema precedentă, ∀h ∈ Rk, d(g ◦ f)(a)(h) = [dg(f(a)) ◦ df(a)] (h) =
dg(f(a))(df(a)(h)) = Jg(f(a)) · Jf (a) · h, de unde rezultă relaţia din corolar.

De altfel, rezultatul acestui corolar este şi consecinţa imediată a teoremei
2.4.5, 2)., unde se arată că matricea asociată compunerii a două aplicaţii
liniare este produsul matricilor asociate a celor două aplicaţii.

Să considerăm funcţiile de coordonate ale aplicaţiilor vectoriale f şi g:
f = (f1, ..., fl), g = (g1, ..., gm); atunci relaţia din corolar se scrie:

∂(g1 ◦ f)

∂x1

(a) . . .
∂(g1 ◦ f)

∂xk

(a)

...
. . .

...
∂(gm ◦ f)

∂x1

(a) . . .
∂(gm ◦ f)

∂xk

(a)

 =

=


∂g1

∂y1

(f(a)) . . .
∂g1

∂yl

(f(a))

...
. . .

...
∂gm

∂y1

(f(a)) . . .
∂gm

∂yl

(f(a))

 ·


∂f1

∂x1

(a) . . .
∂f1

∂xk

(a)

...
. . .

...
∂fl

∂x1

(a) . . .
∂fl

∂xk

(a)


Elementul de pe linia i şi coloana j din matricea produs se obţine ı̂nmulţind
linia i din primul factor cu coloana j din factorul doi; astfel obţinem, ∀i =
1, ...,m, j = 1, ..., k:
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(DC)
∂(gi ◦ f)

∂xj

(a) =
∂gi

∂y1

(f(a)) · ∂f1

∂xj

(a) + ... +
∂gi

∂ylm
(f(a)) · ∂fl

∂xj

(a)

3.2.25 Cazuri particulare.
1). m = 1

În acest caz (g ◦ f)(x1, ..., xk) = g(f1(x1, ..., xk), ..., fl(x1, ..., xk)).
Formula (DC) devine

∂(g ◦ f)

∂xj

(a) =
∂g

∂y1

(f(a)) · ∂f1

∂xj

(a) + ... +
∂g

∂yl

(f(a)) · ∂fl

∂xj

(a),∀j = 1, ..., k.

Fie acum k = l = 2 şi funcţiile f : A ⊆ R2 → R2, g : B ⊆ R2 → R,

(x, y)
f7→ (u(x, y), v(x, y)) ∈ R2, (u, v)

g7→ g(u, v) ∈ R. Funcţia compusă
h = g ◦f este definită prin h(x, y) = g(f(x, y)) = g(u(x, y), v(x, y)),∀(x, y) ∈
A. Dacă (a, b) ∈ Å, f este diferenţiabilă ı̂n (a, b) şi g este diferenţiabilă ı̂n
f(a, b) ∈ B̊ atunci dh(a, b) = dg(f(a, b)) ◦ df(a, b) ceea ce antrenează pentru
matricile jacobiene: Jh(a, b)1×2 = Jg(f(a, b))1×2 · Jf (a, b)2×2. Scriind explicit
această ultimă relaţie, obţinem:

(
∂h

∂x
(a, b)

∂h

∂y
(a, b)

)
=

(
∂g

∂u
(f(a, b))

∂g

∂v
(f(a, b))

)
·


∂u

∂x
(a, b)

∂u

∂y
(a, b)

∂v

∂x
(a, b)

∂v

∂y
(a, b)


de unde:

∂h

∂x
(a, b) =

∂g

∂u
(f(a, b)) · ∂u

∂x
(a, b) +

∂g

∂v
(f(a, b)) · ∂v

∂x
(a, b)

∂h

∂y
(a, b) =

∂g

∂u
(f(a, b)) · ∂u

∂y
(a, b) +

∂g

∂v
(f(a, b)) · ∂v

∂y
(a, b)

Dacă am presupune, ı̂n plus, că există
∂g

∂u
(u, v),

∂g

∂v
(u, v) pe o ı̂ntreagă

vecinătate a lui f(a, b) şi ŝınt la r̂ındul lor diferenţiabile ı̂n f(a, b) iar f
admite derivate parţiale de ordin doi, atunci am putea aplica formula de
derivare de la funcţii compuse pentru a obţine derivatele de ordin doi ale lui
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h ı̂n (a, b); vom prezenta mai jos calculul acestor derivate fără a mai pune ı̂n
evidenţă punctele ı̂n care ŝınt calculate (derivatele lui h şi cele ale lui u şi v
ŝınt calculate ı̂n (a, b) iar derivatele lui g ı̂n f(a, b)):

∂2h

∂x2
=

(
∂2g

∂u2
· ∂u

∂x
+

∂2g

∂v∂u
· ∂v

∂x

)
· ∂u

∂x
+

∂g

∂u
· ∂2u

∂x2
+

+

(
∂2g

∂u∂v
· ∂u

∂x
+

∂2g

∂v2
· ∂v

∂x

)
· ∂v

∂x
+

∂g

∂v
· ∂2v

∂x2

∂2h

∂y∂x
=

(
∂2g

∂u2
· ∂u

∂y
+

∂2g

∂v∂u
· ∂v

∂y

)
· ∂u

∂x
+

∂g

∂u
· ∂2u

∂y∂x
+

+

(
∂2g

∂u∂v
· ∂u

∂y
+

∂2g

∂v2
· ∂v

∂y

)
· ∂v

∂x
+

∂g

∂v
· ∂2v

∂y∂x

∂2h

∂x∂y
=

(
∂2g

∂u2
· ∂u

∂x
+

∂2g

∂v∂u
· ∂v

∂x

)
· ∂u

∂y
+

∂g

∂u
· ∂2u

∂x∂y
+

+

(
∂2g

∂u∂v
· ∂u

∂x
+

∂2g

∂v2
· ∂v

∂x

)
· ∂v

∂y
+

∂g

∂v
· ∂2v

∂x∂y

∂2h

∂y2
=

(
∂2g

∂u2
· ∂u

∂y
+

∂2g

∂v∂u
· ∂v

∂y

)
· ∂u

∂y
+

∂g

∂u
· ∂2u

∂y2
+

+

(
∂2g

∂u∂v
· ∂u

∂y
+

∂2g

∂v2
· ∂v

∂y

)
· ∂v

∂y
+

∂g

∂v
· ∂2v

∂y2
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mai multe variabile

3.2 Diferenţiala

3.2.26 2). k = m = 1
Fie f : A ⊆ R → Rl şi g : B ⊆ Rl → R cu condiţia de compunere f(A) ⊆ B;
atunci f(t) = (f1(t), ..., fl(t)),∀t ∈ A, iar funcţia compusă este
h : A ⊆ R → R, h(t) = g(f1(t), ..., fl(t)),∀t ∈ A; h este deci o funcţie reală
de o variabilă reală.

Fie a ∈ Å; dacă f este diferenţiabilă ı̂n a şi g este diferenţiabilă ı̂n f(a) ∈
B̊ atunci: dh(a) = dg(f(a)) ◦ df(a) iar matricile jacobiene verifică relaţia
Jh(a)1×1 = Jg(f(a))1×l · Jf (a)l×1 ceea ce explicit se scrie:

(
h′(a)

)
=

(
∂g

∂y1

(f(a)) . . .
∂g

∂yl

(f(a))

)
·

f
′
1(a)
...

f ′l (a)

 ,

de unde obţinem

h′(a) =
∂g

∂y1

(f(a)) · f ′1(a) + ...+
∂g

∂yl

(f(a)) · f ′l (a).

O situaţie concretă ı̂n care putem ı̂nt̂ılni o astfel de compunere este aceea
ı̂n care A este un interval ı̂nchis din R, f este o funcţie continuă (deci un
drum sau un arc) cu graficul ı̂ntr-o mulţime din R3 (care poate fi ĝındită

80
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ca interiorul unei ı̂ncăperi) iar g reprezintă temperatura ı̂n punctele acelei
ı̂ncăperi. Funcţia g ◦ f reprezintă temperatura de-a lungul drumului f iar
derivata acesteia reprezintă variaţia temperaturii pe arcul f .

Fie l = 2, ϕ : A ⊆ R → R2, ϕ(t) = (u(t), v(t)) şi f : B ⊆ R2 → R
a.̂ı. ϕ(A) ⊆ B; atunci funcţia compusă este h = f ◦ ϕ : A ⊆ R →
R, h(t) = f(u(t), v(t)),∀t ∈ A. Dacă ϕ este diferenţiabilă pe Å (ceea ce,
după observaţia 3.2.17, 2), este echivalent cu a spune că ϕ este derivabilă pe
Å) , f este diferenţiabilă pe B̊ iar ϕ(Å) ⊆ B̊ atunci h este derivabilă pe Å şi

h′(t) =
∂f

∂u
(u(t), v(t)) · u′(t) +

∂f

∂v
(u(t), v(t)) · v′(t),∀t ∈ Å.

Dacă a = (a1, a2) ∈ B̊ (deci ∃r > 0 a.̂ı. T (a, r) ⊆ A) , u = (u1, u2) ∈ R2 \{0}
şi δ = r

‖u‖ atunci ϕ = (ϕ1, ϕ2) : [−δ, δ] → R2, ϕ(t) = a + tu,∀t ∈ [−δ, δ]
este un drum al cărui grafic este un segment ce trece prin a şi are direcţia u.
Dacă f este diferenţiabilă ı̂n a atunci h = f ◦ ϕ este derivabilă ı̂n 0 şi, după
formula de derivare de mai sus,

h′(0) =
∂f

∂x
(a) · ϕ′1(0) +

∂f

∂y
(a) · ϕ′2(0) =

∂f

∂x
(a1, a2) · u1 +

∂f

∂y
(a1, a2) · u2 =

= df(a)(u) =
df

du
(a).

Rezultă că derivata funcţiei f ı̂n a după direcţia u este derivata unei funcţii
compuse.

3). k = 2, l = 3,m = 1

Fie f = (f1, f2, f3) : A ∈ R2 → R3, g : B ⊆ R3 → R cu f(A) ⊆
B; dacă f este diferenţiabilă ı̂n punctul a ∈ Å şi g este diferenţiabilă ı̂n
f(a) ∈ B̊ atunci funcţia compusă h = g ◦ f : A ⊆ R2 → R, h(x, y) =
g(f1(x, y), f2(x, y), f3(x, y)) este diferenţiabilă ı̂n a şi dh(a) = dg(f(a))◦df(a)
de unde obţinem Jh(a)1×2 = Jg(f(a))1×3 · Jf (a)3×2 sau scris dezvoltat (fără
a mai pune ı̂n evidenţă punctele ı̂n care ŝınt calculate derivatele parţiale):

(
∂h

∂x

∂h

∂y

)
=

(
∂g

∂y1

∂g

∂y2

∂g

∂y3

)
·


∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y
∂f3

∂x

∂f3

∂y

 .
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Putem atunci obţine derivatele parţiale ale funcţiei compuse h:
∂h

∂x
=

∂g

∂y1

· ∂f1

∂x
+
∂g

∂y2

· ∂f2

∂x
+
∂g

∂y3

· ∂f3

∂x
∂h

∂y
=

∂g

∂y1

· ∂f1

∂y
+
∂g

∂y2

· ∂f2

∂y
+
∂g

∂y3

· ∂f3

∂y

.

3.3 Diferenţiale de ordin superior

Derivate mixte

Aşa cum am menţionat deja, derivatele parţiale mixte de ordin doi ale unei
funcţii de mai multe variabile nu ŝınt, ı̂n general, egale.

În teorema următoare prezentăm două criterii (condiţii suficiente) pentru
ca derivatele mixte să coincidă.

3.3.1 Teoremă. Fie f : A ⊆ Rk → R şi a ∈ Å.

1). Criteriul lui Schwarz.

Fie i, j ∈ {1, ..., k}; dacă există
∂2f

∂xi∂xj

,
∂2f

∂xj∂xi

pe o vecinătate a punc-

tului a şi ŝınt continue ı̂n a atunci

∂2f

∂xi∂xj

(a) =
∂2f

∂xj∂xi

(a).

2). Criteriul lui Young.

Dacă, ∀i ∈ {1, ..., k}, există
∂f

∂xi

pe o vecinătate a punctului a şi este

diferenţiabilă ı̂n a atunci

∂2f

∂xi∂xj

(a) =
∂2f

∂xj∂xi

(a),∀i, j ∈ {1, ..., k}.

miDemonstraţie. Observăm ı̂nt̂ıi că demonstraţia se poate reduce la cea
din cazul k = 2. Într-adevăr, ı̂n loc să studiem problema pentru funcţia de
k variabile f considerăm funcţia de două variabile

(xi, xj) 7→ f(a1, ..., ai−1, xi, ai+1, ..., aj−1, xj, aj+1, ..., ak)
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ale cărei derivate de ordin doi după xi şi xj ı̂n punctul a coincid cu cele ale
lui f .

Fie deci f : A ⊆ R2 → R şi (a, b) ∈ Å. Considerăm S ⊆ A o sferă cu
centrul ı̂n (a, b) şi de rază r drept vecinătate pe care au loc condiţiile din
criteriul lui Schwarz, respectiv cele din criteriul lui Young.

Fie (x, y) ∈ S cu x 6= a şi y 6= b un punct arbitrar dar fixat şi fie expresia
g(x, y) = f(x, y) − f(x, b) − f(a, y) + f(a, b). Definim două funcţii de o
variabilă astfel:

ϕ : [a, x] ⊆ R → R, ϕ(t) = f(t, y)− f(t, b),∀t ∈ [a, x] şi
ψ : [b, y] ⊆ R → R, ϕ(s) = f(x, s)− f(a, s),∀s ∈ [b, y].
Atunci g(x, y) = ϕ(x)− ϕ(a) = ψ(y)− ψ(b).

Din ipotezele ambelor criterii rezultă că există
∂f

∂x
şi
∂f

∂y
pe S şi astfel ϕ

şi ψ ŝınt derivabile pe intervalele lor de definiţie şi

ϕ′(t) =
∂f

∂x
(t, y)− ∂f

∂x
(t, b),∀t ∈ [a, x],

ψ′(s) =
∂f

∂y
(x, s)− ∂f

∂y
(a, s),∀s ∈ [b, y].

Putem astfel să aplicăm teorema creşterilor finite (teorema lui Lagrange)
celor două funcţii.

Deci există c ∈ (a, x) şi d ∈ (b, y) a.̂ı.

(1) g(x, y) = ϕ′(c)(x− a) = ψ′(d)(y − b)

iar

(2) ϕ′(c) =
∂f

∂x
(c, y)− ∂f

∂x
(c, b),

(3) ψ′(d) =
∂f

∂y
(x, d)− ∂f

∂y
(a, d).

1). Să presupunem acum că ne situăm ı̂n condiţiile criteriului lui Schwarz;

atunci există
∂2f

∂x∂y
,
∂2f

∂y∂x
pe S şi ŝınt continue ı̂n (a, b).

În (2) şi (3) putem aplica din nou teorema lui Lagrange şi obţinem
punctele e ∈ [b, y] şi f ∈ [a, x] a.̂ı.

(4) ϕ′(c) =
∂2f

∂y∂x
(c, e)(y − b),
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(5) ψ′(d) =
∂2f

∂x∂y
(f, d)(x− a).

Reprezentăm poziţia posibilă a acestor puncte ı̂n figura următoare:
6

-
ar

x

y

0

q
qq q

r
(c, y)

q(c, e)
(a, b)

-

-

(c, b)
6

(f, d)
(x, y)r
(x, d)

(x, b)

Din (1), (4) şi (5) rezultă că, ∀(x, y) ∈ S, x 6= a, y 6= b, există două puncte,
(c(x, y), e(x, y)), (f(x, y), d(x, y)) ∈ (a, x)× (b, y), a.̂ı.

(6)
∂2f

∂y∂x
(c(x, y), e(x, y)) =

∂2f

∂x∂y
(f(x, y), d(x, y)).

Trecem la limită pentru (x, y) → (a, b) ı̂n (6) şi, deoarece derivatele mixte
ŝınt continue iar
lim(x,y)→(a,b) c(x, y) = a = lim(x,y)→(a,b) f(x, y),
lim(x,y)→(a,b) e(x, y) = b = lim(x,y)→(a,b) d(x, y), rezultă că

∂2f

∂y∂x
(a, b) =

∂2f

∂x∂y
(a, b).

2). Să presupunem acum că
∂f

∂x
,
∂f

∂y
ŝınt definite pe S şi ŝınt diferenţiabile

ı̂n (a, b). Atunci există toate derivatele de ordin doi ale lui f pe S şi există
două funcţii α, β : S → R continue şi nule ı̂n (a, b) a.̂ı.

(7)
∂f

∂x
(x, y) =

∂f

∂x
(a, b) +

∂2f

∂x2
(a, b)(x− a) +

∂2f

∂y∂x
(a, b)(y − b)+

+α(x, y) · ‖(x, y)− (a, b)‖,∀(x, y) ∈ S,

(8)
∂f

∂y
(x, y) =

∂f

∂y
(a, b) +

∂2f

∂x∂y
(a, b)(x− a) +

∂2f

∂y2
(a, b)(y − b)+
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+β(x, y) · ‖(x, y)− (a, b)‖,∀(x, y) ∈ S.

Deoarece (c, y), (c, b) ∈ S, din (2) şi (7) obţinem

(9) ϕ′(c) =
∂2f

∂y∂x
(a, b)(y − b) + α(c, y) · ‖(c, y)− (a, b)‖ − α(c, b) · |c− a|,

şi cum (x, d), (a, d) ∈ S, din (3) şi (8) rezultă

(10) ψ′(d) =
∂2f

∂x∂y
(a, b)(x− a) + β(x, d) · ‖(x, d)− (a, b)‖− β(a, d) · |d− b|.

Atunci, din (1), (9) şi (10) rezultă că

(11)
∂2f

∂y∂x
(a, b)(y − b)(x− a) + α(c, y) · ‖(c, y)− (a, b)‖(x− a)−

−α(c, b)·|c−a|(x−a) =
∂2f

∂x∂y
(a, b)(x−a)(y−b)+β(x, d)·‖(x, d)−(a, b)‖(y−b)−

−β(a, d) · |d− b|(y − b).

Împărţim relaţia (11) cu (x− a)(y − b) şi obţinem:

(12)
∂2f

∂y∂x
(a, b) + α(c, y) · ‖(c, y)− (a, b)‖

y − b
− α(c, b) · |c− a|

y − b
=

=
∂2f

∂x∂y
(a, b) + β(x, d) · ‖(x, d)− (a, b)‖

x− a
− β(a, d) · |d− b|

x− a
.

Deoarece (x, y) este arbitrar ı̂n S ı̂l putem alege a.̂ı. |x − a| = |y − b|;

ı̂n acest caz
‖(c, y)− (a, b)‖

|y − b|
≤ ‖(x, y)− (a, b)‖

|y − b|
≤
√

2,
‖(x, d)− (a, b)‖

|x− a|
≤

‖(x, y)− (a, b)‖
|x− a|

≤
√

2,
|c− a|
|y − b|

≤ |x− a|
|y − b|

= 1,
|d− b|
|x− a|

≤ |y − b|
|x− a|

= 1.

Putem atunci trece la limită ı̂n relaţia (12) pentru (x, y) → (a, b) cu
condiţia că |x − a| = |y − b|; deoarece α şi β ŝınt continue şi nule ı̂n (a, b)
rezultă că

∂2f

∂y∂x
(a, b) =

∂2f

∂x∂y
(a, b).

�



86 Capitolul 3. Diferenţiabilitatea funcţiilor

3.3.2 Definiţie. Fie f : A ⊆ Rk → Rl o funcţie diferenţiabilă ı̂n toate
punctele interioare ale mulţimii A; atunci, ∀h ∈ Rk, putem defini funcţia
gh : Å→ Rl prin gh(x) = df(x)(h),∀x ∈ Å.

Dacă, ∀h ∈ Rk, funcţia gh este diferenţiabilă ı̂n punctul a ∈ Å, spunem
că funcţia f este diferenţiabilă de două ori ı̂n a.

Diferenţiala a doua a funcţiei f ı̂n a este prin definiţie aplicaţia:

d2f(a) : Rk → Rl, d2f(a)(h) = dgh(a)(h),∀h ∈ Rk.

În cazul particular k = 2, l = 1, f : A ⊆ R2 → R este diferenţiabilă
de două ori ı̂n punctul interior (a, b) ∈ Å dacă, ∀(h, k) ∈ R2, aplicaţia
g(h,k) : Å → R definită prin g(h,k)(x, y) = df(x, y)(h, k),∀(x, y) ∈ Å, este
diferenţiabilă ı̂n (a, b).

3.3.3 Propoziţie. Fie f : A ⊆ R2 → R o aplicaţie diferenţiabilă ı̂n toate
punctele mulţimii deschise A; f este diferenţiabilă de două ori ı̂n (a, b) ∈ Å

dacă şi numai dacă
∂f

∂x
şi
∂f

∂y
ŝınt funcţii diferenţiabile ı̂n (a, b).

În acest caz

d2f(a, b)(h, k) =
∂2f

∂x2
(a, b) · h2 + 2

∂2f

∂x∂y
(a, b) · hk +

∂2f

∂y2
(a, b) · k2.

Demonstraţie. Să reamintim că, ∀(x, y) ∈ Å,∀(h, k) ∈ R2,

g(h,k) : Å→ R, g(h,k)(x, y) = df(x, y)(h, k) =
∂f

∂x
(x, y) · h+

∂f

∂y
(x, y) · k.

Dacă f este diferenţiabilă de două ori ı̂n (a, b) atunci, ∀(h, k) ∈ R2, g(h,k)

este diferenţiabilă ı̂n (a, b).

Rezultă că g(1,0) =
∂f

∂x
şi g(0,1) =

∂f

∂y
ŝınt diferenţiabile ı̂n (a, b).

Reciproc, dacă
∂f

∂x
şi
∂f

∂y
ŝınt diferenţiabile ı̂n (a, b) atunci

∂f

∂x
·h+

∂f

∂y
·k

este diferenţiabilă ı̂n (a, b), ∀(h, k) ∈ R2 (vezi teorema 3.2.22, punctele 1) şi
2)). Rezultă că g(h,k) este diferenţiabilă ı̂n (a, b) şi deci f este diferenţiabilă
de două ori ı̂n (a, b).

În acest caz

d2f(a, b)(h, k) = dg(h,k)(a, b)(h, k) =
∂g(h,k)

∂x
(a, b) · h+

∂g(h,k)

∂y
(a, b) · k =
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=

(
∂2f

∂x2
(a, b) · h+

∂2f

∂x∂y
(a, b) · k

)
· h+

(
∂2f

∂y∂x
(a, b) · h+

∂2f

∂y2
(a, b) · k

)
· k.

Criteriul lui Young ne asigură că derivatele parţiale mixte ale lui f ı̂n punctul
(a, b) ŝınt egale; deci:

d2f(a, b)(h, k) =
∂2f

∂x2
(a, b) · h2 + 2

∂2f

∂x∂y
(a, b) · hk +

∂2f

∂y2
(a, b) · k2.

�

3.3.4 Observaţii. 1). Ţin̂ınd cont de notaţiile dx(h, k) = h, dy(h, k) = k
(vezi observaţia 3.2.7, 3)) putem scrie funcţional relaţia de mai sus:

d2f(a, b) =
∂2f

∂x2
· (dx)2 + 2

∂2f

∂x∂y
· dxdy +

∂2f

∂y2
· (dy)2

unde toate derivatele de ordin doi ale lui f ŝınt calculate ı̂n punctul (a, b).
2). Fie acum k oarecare şi l = 1; presupunem că f : A ⊆ Rk → R este

diferenţiabilă pe Å şi fie a ∈ Å. Presupunem că, ∀h = (h1, ..., hk) ∈ Rk

funcţia gh : Å → R, gh(x) = df(x)(h) =
k∑

j=1

∂f

∂xj

(x) · hj,∀x ∈ Å, este

diferenţiabilă ı̂n a sau, echivalent, că, ∀j = 1, ..., k, funcţia
∂f

∂xj

(·) este

diferenţiabilă ı̂n a. Atunci d2f(a)(h) = dgh(a)(h) =
k∑

i=1

∂gh

∂xi

(a) · hi de unde

d2f(a)(h) =
k∑

i,j=1

∂2f

∂xi∂xj

(a) · hihj

Aşa cum se constată diferenţiala a doua este o formă pătratică ı̂n h.
Dacă trecem la scrierea funcţională

d2f(a) =
k∑

i,j=1

∂2f

∂xi∂xj

(a) · dxidxj

3). În cazul general f = (f1, ..., fl) : A ⊆ Rk → Rl,∀h ∈ Rk, funcţia

gh : Å → Rl este definită prin gh(x) = df(x)(h) =

df1(x)(h)
...

dfl(x)(h)

. Rezultă
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că funcţia vectorială gh are componentele scalare (gh
1 , ..., g

h
l ) unde, ∀j =

1, ..., l, gh
j (x) =

k∑
i=1

∂fj

∂xi

(x) · hi. Funcţia gh este diferenţiabilă ı̂n a, ∀h ∈ Rk,

dacă şi numai dacă
∂fj

∂xi

(·) este diferenţiabilă ı̂n a, ∀i = 1, ..., k, j = 1, ..., l.

Atunci d2f(a)(h) = dgh(a)(h) = Jgh(a) · h. Matricea jacobiană a funcţiei
gh este dată de

Jgh(a) =


∂gh

1

∂x1

(a) . . .
∂gh

1

∂xk

(a)

...
. . .

...
∂gh

l

∂x1

(a) . . .
∂gh

l

∂xk

(a)


şi deci

d2f(a)(h) =



k∑
i=1

∂2f1

∂x1∂xi

(a) · hi . . .
k∑

i=1

∂2f1

∂xk∂xi

(a) · hi

...
. . .

...
k∑

i=1

∂2fl

∂x1∂xi

(a) · hi . . .
k∑

i=1

∂2fl

∂xk∂xi

(a) · hi


·

h1
...
hk

 ,

de unde

d2f(a)(h) =



k∑
i,j=1

∂2f1

∂xi∂xj

(a) · hihj

...
k∑

i,j=1

∂2fl

∂xi∂xj

(a) · hihj


,∀h ∈ Rk.

4). Aşa cum am remarcat mai sus la punctele 2) şi 3), diferenţiabilitatea
tuturor derivatelor parţiale de ordinul ı̂nt̂ıi ale unei funcţii ı̂ntr-un punct
echivalează cu faptul că funcţia este diferenţiabilă de două ori ı̂n acel punct.
Atunci putem reformula criteriul lui Young:
Dacă o funcţie este diferenţiabilă de două ori ı̂ntr-un punct atunci derivatele
mixte de ordin doi ale funcţiei ı̂n acel punct coincid.

5). Observăm o asemănare a formulei care dă diferenţiala a doua cu
formula de ridicare la pătrat şi atunci introducem (pentru funcţii scalare de
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două variabile) notaţia:

d2f =

(
∂

∂x
· dx+

∂

∂y
· dy

)(2)

(f)

În formula de mai sus, numărul 2 de la exponent semnifică ridicarea la putere

pentru dx şi dy şi derivatele de ordin doi ale lui f pentru
∂

∂x
şi

∂

∂y
.

În cazul general se obţine o formulă de diferenţiere asemănătoare celei
din cazul funcţiilor de două variabile

dnf =

(
∂

∂x
· dx+

∂

∂y
· dy

)(n)

(f) =
n∑

i=0

Ci
n

∂nf

∂xn−i∂yi
(dx)n−i(dy)i.

De exemplu, pentru n = 3 obţinem

d3f =
∂3f

∂x3
(dx)3 + 3

∂3f

∂x2∂y
(dx)2(dy) + 3

∂3f

∂x∂y2
(dx)(dy)2 +

∂3f

∂y3
(dy)3.

O formulă similară, care mimează ridicarea la putere, funcţionează şi ı̂n
cazul general f : A ⊆ Rk → R:

dnf =

(
∂

∂x1

· dx1 + ...+
∂

∂xk

· dxk

)(n)

(f).

6). Criteriile lui Schwarz şi Young acoperă situaţii diferite. Astfel dacă
o funcţie ı̂ndeplineşte condiţiile din criteriul lui Young este diferenţiabilă de
două ori dar nu rezultă că derivatele sale mixte ŝınt continue. De asemenea
este posibil ca o funcţie să aibă derivate mixte continue ı̂ntr-un punct dar
funcţia să nu fie diferenţiabilă de două ori.

O situaţie ı̂n care se aplică ambele criterii de egalitate a derivatelor parţiale
mixte este prezentată mai jos.

3.3.5 Definiţie. Fie D ⊆ Rk o mulţime deschisă; o funcţie f : D → Rl

este de clasă C2 pe D (notaţie: f ∈ C2(D)) dacă există toate derivatele
parţiale de ordin doi ale tuturor funcţiilor de coordonate ale lui f şi acestea
ŝınt continue pe D.

Similar, spunem că f este de clasă Cn pe D şi notăm f ∈ Cn(D) dacă
funcţiile de coordonate ale lui f au toate derivatele parţiale p̂ınă la ordinul n
inclusiv şi acestea ŝınt continue pe D.
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3.3.6 Observaţie. Funcţiile de clasă C2 pe D ı̂ndeplinesc condiţiile din
criteriul lui Schwarz dar şi pe acelea ale criteriului lui Young. Într-adevăr,
putem aplica criteriul de diferenţiabilitate (teorema 3.2.8) derivatelor parţiale
de ordin ı̂nt̂ıi; rezultă că acestea ŝınt diferenţiabile pe D. Deci pentru aceste
funcţii toate derivatele mixte de ordin doi coincid pe D.

3.3.7 Teoremă. O funcţie de clasă C2 pe D este diferenţiabilă de două ori
ı̂n toate punctele lui D.

Demonstraţie. Aşa cum am remarcat mai sus, o funcţie de clasă C2 are
derivate parţiale de ordin ı̂nt̂ıi şi acestea ŝınt diferenţiabile ı̂n toate punctele
lui D; de aici rezultă că funcţia este diferenţiabilă de două ori pe D.

În mod similar se obţine:

3.3.8 Teoremă. O funcţie de clasă Cn pe D este diferenţiabilă de n ori ı̂n
toate punctele mulţimii D.

3.4 Formula lui Taylor

Vom ı̂ncepe cu o formă simplă a formulei lui Taylor, formă care este pusă ı̂n
evidenţă de teorema lui Lagrange.

3.4.1 Teoremă (teorema lui Lagrange). Fie A ⊆ Rk o mulţime deschisă şi
convexă şi fie f : A→ R o funcţie diferenţiabilă pe A; atunci, ∀a, b ∈ A,
∃c ∈ [a, b] a.̂ı.

f(b)− f(a) = df(c)(b− a)

Demonstraţie. Deoarece f este diferenţiabilă pe A, din corolarul 3.2.4,
2), f admite derivată ı̂n orice punct a ∈ A pe orice direcţie u ∈ Rk \ {0} şi
df

du
(a) = df(a)(u).

Din teorema de medie (teorema 3.1.6), ∀a, b ∈ A,∃c ∈ [a, b] a.̂ı.

f(b)− f(a) =
df

d(b− a)
(c)

(A este mulţime convexă şi deci condiţia [a, b] ⊆ A este ı̂ndeplinită).
Rezultă că f(b)− f(a) = df(c)(b− a).

�
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3.4.2 Observaţii. 1). Dacă a = (a1, ..., ak), b = (b1, ..., bk), relaţia din
teoremă se poate scrie dezvoltat (vezi şi observaţia 3.2.7, 1))

f(b)− f(a) =
∂f

∂x1

(c)(b1 − a1) + ...+
∂f

∂xk

(c)(bk − ak).

Pentru cazul k = 2 formula revine la

f(b)− f(a) =
∂f

∂x
(c)(b1 − a1) +

∂f

∂y
(c)(b2 − a2).

2). Teorema lui Lagrange se poate reformula:
Fie a ∈ A; ∀x ∈ A,∃cx ∈ [a, x] a.̂ı.

f(x) = f(a) + df(cx)(x− a).

În această variantă obţinem o formulă de tip Taylor de ordin zero cu restul
R0(f, x) = df(cx)(x− a).

Prezentăm acum formula lui Taylor ı̂n forma sa generală.

3.4.3 Teoremă (formula lui Taylor). Fie A ⊆ Rk o mulţime deschisă şi
convexă, a ∈ A şi f : A→ R o funcţie diferenţiabilă de (n+ 1) ori pe A (̂ın
particular f ∈ Cn+1(A)); ∀x ∈ A,∃c ∈ [a, x] a.̂ı.

f(x) = f(a)+
1

1!
df(a)(x−a)+ ...+ 1

n!
dnf(a)(x−a)+ 1

(n+ 1)!
dn+1f(c)(x−a).

Demonstraţie. ∀x ∈ A, [a, x] ⊆ A; ı̂n plus, deoarece a şi x ŝınt puncte
interioare lui A, ∃r > 0 a.̂ı. S(a, r) ⊆ A şi S(x, r) ⊆ A. Atunci

a+ t(x− a) ∈ S(a, r) ⊆ A⇔ − r

‖x− a‖
< t <

r

‖x− a‖
iar

a + t(x− a) ∈ S(x, r) ⊆ A ⇔ 1− r

‖x− a‖
< t < 1 +

r

‖x− a‖
; fie intervalul

deschis I =

]
− r

‖x− a‖
, 1 +

r

‖x− a‖

[
⊆ R. Definim ϕ : I → A,

ϕ(t) = a+ t(x− a) = (a1 + t(x1 − a1), ..., ak + (xk − ak)),∀t ∈ I;

ϕ(I) este un segment deschis din A care conţine segmentul ı̂nchis ϕ([0, 1]) =
[a, x]. Funcţia ϕ este derivabilă pe I (vezi observaţia 3.2.12, 3)) şi

ϕ′(t) =

ϕ′1(t)
...

ϕ′k(t)

 =

(a1 + t(x1 − a1))
′

...
(ak + t(xk − ak))

′

 =

x1 − a1
...

xk − ak

 = x− a,∀t ∈ I.
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Rezultă că ϕ este derivabilă de oriĉıte ori pe I şi ϕ(n)(t) = 0 ∈ Rk,∀n ≥ 2.
Să considerăm acum funcţia h : I → R, h = f ◦ ϕ. Aşa cum am constat

ı̂ntr-unul dintre cazurile particulare de derivare a funcţiilor compuse (vezi
3.2.25, 2)) h este derivabilă şi, ∀t ∈ I,

h′(t) =
∂f

∂x1

(ϕ(t)) · ϕ′1(t) + ...+
∂f

∂xk

(ϕ(t)) · ϕ′k(t) =

=
k∑

i=1

∂f

∂xi

(ϕ(t)) · (xi − ai) = df(ϕ(t))(x− a).

Deoarece f este diferenţiabilă de două ori, ∀i = 1, ..., k,
∂f

∂xi

este diferenţiabilă

şi putem aplica iar formula de derivare a funcţiilor compuse; rezultă că h este
derivabilă de două ori şi, ∀t ∈ I,

h′′(t) =
k∑

i,j=1

∂2f

∂xi∂xj

(ϕ(t)) · (xi − ai)(xj − aj) = d2f(ϕ(t))(x− a).

Rezultă din aproape ı̂n aproape că h este derivabilă de (n+ 1) ori pe I şi

h(i)(t) = dif(ϕ(t))(x− a),∀t ∈ I,∀i = 1, ..., n+ 1.

Putem atunci să aplicăm funcţiei h formula lui Maclaurin pe intervalul I;
cum 0, 1 ∈ I̊ = I,∃ θ ∈]0, 1[ a.̂ı.

h(1) = h(0) +
h′(0)

1!
+ ...+

h(n)(0)

n!
+
h(n+1)(θ)

(n+ 1)!
.

Fie atunci c = ϕ(θ) ∈ [a, x]. Înlocuind ı̂n relaţia precedentă
h(1) = f(x), h(0) = f(a), h(i)(0) = dif(a)(x− a),∀i = 1, ..., n şi
h(n+1)(θ) = dn+1f(c)(x− a),
obţinem formula din enunţul teoremei.

�

3.4.4 Corolar. Fie A deschisă şi convexă ı̂n Rk, a ∈ A şi f : A → R o
funcţie diferenţiabilă de două ori pe A; atunci, ∀x ∈ A,∃c ∈ [a, x] a.̂ı.

f(x) = f(a) +
k∑

i=1

∂f

∂xi

(a)(xi − ai) +
1

2

k∑
i,j=1

∂2f

∂xi∂xj

(c)(xi − ai)(xj − aj).
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Demonstraţie. Într-adevăr ı̂n acest caz formula lui Taylor se scrie:

f(x) = f(a) +
1

1!
df(a)(x− a) +

1

2!
d2f(c)(x− a)

Utilizăm acum formulele care dau diferenţiala de ordin 1 (observaţia 3.2.7,
1)) şi diferenţiala de ordin 2 (observaţia 3.3.24, 3)) şi obţinem relaţia din
enunţul corolarului.

�

3.4.5 Observaţie. În cazul k = 2 reformulăm corolarul precedent:
Fie A ⊆ R2 deschisă şi convexă, (a, b) ∈ A şi f : A → R o funcţie
diferenţiabilă de două ori pe A; atunci, ∀(x, y) ∈ A,∃(c, d) pe segmentul
ce uneşte (a, b) cu (x, y) a.̂ı.

f(x, y) = f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)+

+
1

2

[
∂2f

∂x2
(c, d)(x− a)2 + 2

∂2f

∂x∂y
(c, d)(x− a)(y − b) +

∂2f

∂y2
(c, d)(y − b)2

]
.
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Diferenţiabilitatea funcţiilor de
mai multe variabile

3.5 Puncte de extrem

Problema existenţei punctelor de extrem pentru o funcţie reală se rezolvă
cu mijloace topologice; de exemplu teorema lui Weierstrass (corolarul 2.3.9)
este un instrument util ı̂n rezolvarea acestei probleme.

Pentru a găsi efectiv punctele de extrem ale unei funcţii trebuie ı̂nsă să
utilizăm, ca şi ı̂n cazul funcţiilor de o variabilă, aparatul diferenţial. Aşa
cum vom remarca, diferenţiala ı̂nt̂ıi ne va oferi condiţii necesare de extrem
iar diferenţiala a doua va da condiţii suficiente.

3.5.1 Definiţie. Fie funcţia f : A ⊆ Rk → R.

Un punct a ∈ A este un punct de minim local pentru f dacă există o
vecinătate a sa, V ∈ V(a), a.̂ı., ∀x ∈ V ∩ A, f(x) ≥ f(a)

Un punct a ∈ A este un punct de maxim local pentru f dacă există o
vecinătate a sa, V ∈ V(a), a.̂ı., ∀x ∈ V ∩ A, f(x) ≤ f(a)

a ∈ A este punct de extrem local dacă este punct de minim local sau
punct de maxim local.

În cele ce urmează vom detalia condiţiile necesare pentru ca un punct să
fie punct de extrem local pentru funcţii de două variabile, marĉınd modificările
necesare ı̂n cazul k > 2.

94
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3.5.2 Teoremă (teorema lui Fermat).
Fie f : A ⊆ R2 → R şi (a, b) ∈ Å un punct de extrem local pentru f .
1). Dacă f are derivate parţiale ı̂n (a, b) atunci acestea ŝınt nule.
2). Dacă f este diferenţiabilă ı̂n (a, b) atunci df(a, b) = 0 ceea ce revine la
df(a, b)(h, k) = 0,∀(h, k) ∈ R2.

Demonstraţie. Fie (a, b) un punct de minim local pentru f .

Deoarece (a, b) este punct interior pentru A şi punct de minim local pentru
f putem determina un număr r > 0 a.̂ı.

1. S((a, b), r) ⊆ A şi

2. f(x, y) ≥ f(a, b),∀(x, y) ∈ S((a, b), r).

1). Definim funcţia g :]a−r, a+r[→ R prin g(t) = f(t, b),∀t ∈]a−r, a+r[;
observăm că ∀t ∈]a − r, a + r[, (t, b) ∈ S((a, b), r) ⊆ A şi deci funcţia g este
bine definită.

Funcţia g verifică ipotezele teoremei lui Fermat pentru funcţii reale de o
variabilă reală. Într-adevăr, a este punct interior pentru mulţimea de definiţie
a funcţiei g. Din condiţia 2. g(t) ≥ g(a),∀t ∈]a− r, a + r[; deci a este punct
de minim local pentru g. În plus, deoarece f are derivate parţiale ı̂n (a, b), g

este derivabilă ı̂n a şi g′(a) =
∂f

∂x
(a, b).

Aplicăm atunci teorema lui Fermat pentru g şi obţinem g′(a) = 0.

Rezultă deci că
∂f

∂x
(a, b) = 0.

În mod asemănător se defineşte h :]b − r, b + r[→ R, h(t) = f(a, t),∀t ∈
]b− r, b + r[, şi se arată că h′(b) =

∂f

∂y
(a, b) = 0.

2). Dacă f este diferenţiabilă ı̂n (a, b) atunci f are derivate parţiale ı̂n

(a, b) şi df(a, b) =
∂f

∂x
(a, b)dx +

∂f

∂y
(a, b)dy. Folosind punctul 1). rezultă că

∂f

∂x
(a, b) =

∂f

∂y
(a, b) = 0 şi deci df(a, b) = 0.

�

3.5.3 Observaţie. Rezultatul teoremei precedente se extinde evident ı̂n
cazul k > 2. Astfel, dacă f : A ⊆ Rk → R are un punct de extrem local ı̂n
a ∈ Å şi f este diferenţiabilă ı̂n a atunci df(a) = 0.

3.5.4 Definiţie. Fie f : A ⊆ Rk → R şi a ∈ Å a.̂ı. df(a) = 0; atunci a se
numeşte punct critic al funcţiei.
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3.5.5 Observaţii. 1). Teorema lui Fermat spune că punctele de extrem
local, interioare mulţimii de definiţie a unei funcţii, se găsesc printre punctele
critice ale funcţiei.

Fie f : A ⊆ Rk → R şi a ∈ Å; a este punct critic pentru f dacă df(a)(h) =
k∑

i=1

∂f

∂xi

(a)hi = 0,∀h = (h1, ..., hk) ∈ Rk. Dacă ı̂nlocuim, ∀i = 1, ..., k, pe h

cu ei, obţinem
∂f

∂xi

(a) = 0. Rezultă că a este punct critic pentru f dacă şi

numai dacă
∂f

∂xi

(a) = 0,∀i = 1, ..., k.

Concluzia este că punctele critice ale lui f se obţin rezolv̂ınd sistemul de
k ecuaţii cu k necunoscute

∂f

∂x1

(x1, ..., xk) = 0

. . .
∂f

∂xk

(x1, ..., xk) = 0

.

2). În cazul k = 2 ecuaţia planului tangent ı̂ntr-un punct (a, b) ı̂n care
funcţia f este diferenţiabilă este

z − f(a, b) =
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b).

Dacă punctul (a, b) este punct critic atunci
∂f

∂x
(a, b) =

∂f

∂y
(a, b) = 0 şi deci

ecuaţia planului tangent revine la z = f(a, b) ceea ce reprezintă un plan
paralel cu planul x0y.

Rezultă că ı̂ntr-un punct de extrem local planul tangent la graficul funcţiei
este paralel cu planul x0y. Această interpretare geometrică este ı̂n concor-
danţă cu aceea de la funcţii reale de o variabilă; amintim că, ı̂n cazul unei
funcţii de o variabilă, ı̂ntr-un punct de extrem local tangenta la graficul
funcţiei era paralelă cu axa 0x.

3). Ca şi la funcţii de o variabilă, condiţia ca un punct să fie punct critic
este doar o condiţie necesară nu şi suficientă pentru ca el să fie punct de
extrem.

Dacă considerăm, de exemplu, funcţia f : R2 → R, f(x, y) = xy,∀(x, y) ∈
R2 atunci

∂f

∂x
= y,

∂f

∂y
= x şi astfel singurul punct critic al funcţiei f este
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punctul (0, 0). Observăm ı̂nsă că, ı̂n orice vecinătate a originii, se găsesc
puncte (x, y) cu f(x, y) > 0 = f(0, 0) şi puncte (x, y) cu f(x, y) < 0 = f(0, 0).
Rezultă că punctul critic (0, 0) nu este punct de extrem local.

3.5.6 Definiţie. Un punct critic care nu este punct de extrem pentru o
funcţie f se numeşte punct şa pentru f .

Graficul unei funcţii ı̂n vecinătatea unui punct şa arată, ı̂n cazul k = 2,
ca ı̂n figura de mai jos.

-

6

0

z

y(a, b)�

f(a, b)

(x, y, f(x, y))�

(T )�q

Se observă că, ı̂n orice vecinătate a punctului (a, b, f(a, b)), graficul funcţiei
are puncte situate deasupra şi sub planul tangent(T ).

Pentru a selecta punctele de extrem din mulţimea punctelor critice avem
nevoie de condiţii suplimentare, condiţii exprimabile prin intermediul dife-
renţialei a doua. Pentru aceasta vom studia semnul diferenţialei de ordin
doi. Remarcăm că rezultatele următoare ŝınt valabile ı̂n cazul mai general al
teoriei formelor pătratice.

3.5.7 Definiţie. Fie f : A ⊆ Rk → R o funcţie de două ori diferenţiabilă
ı̂n a ∈ Å; diferenţiala a doua, d2f(a), este pozitiv definită dacă

d2f(a)(h) > 0,∀h ∈ Rk \ {0}.

d2f(a) este negativ definită dacă

d2f(a)(h) < 0,∀h ∈ Rk \ {0}

deci dacă (−d2f(a)) este pozitiv definită.
d2f(a) este nedefinită dacă ∃ h, h′ ∈ Rk \ {0} a.̂ı. d2f(a)(h) > 0 şi

d2f(a)(h′) < 0.
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3.5.8 Observaţie. Fie f : A ⊆ R2 → R o funcţie diferenţiabilă de două ori
ı̂n (a, b) ∈ Å; atunci, după propoziţia 3.3.3, diferenţiala a doua ı̂n punctul
(a, b) este definită prin:

d2f(a, b)(h, k) =
∂2f

∂x2
(a, b)h2 + 2

∂2f

∂x∂y
(a, b)hk +

∂2f

∂y2
(a, b)k2,∀(h, k) ∈ R2.

Fie M =
∂2f

∂x2
(a, b), N =

∂2f

∂x∂y
(a, b), P =

∂2f

∂y2
(a, b).

Ţin̂ınd cont că d2f(a, b)(h, k) = Mh2 + 2Nhk + Pk2 este un trinom de
gradul doi ı̂n h şi k se verifică uşor că:

d2f(a, b)(h, k) > 0,∀(h, k) 6= (0, 0) ⇔
{

N2 −M · P < 0,
M > 0.

Rezultă deci că

d2f(a, b) este pozitiv definită ⇔
{

N2 −M · P < 0,
M > 0.

Similar se arată că

d2f(a, b) este negativ definită ⇔
{

N2 −M · P < 0,
M < 0.

şi că
d2f(a, b) este nedefinită ⇔ N2 −M · P > 0.

În cazul general putem demonstra următoarea propoziţie:

3.5.9 Propoziţie. d2f(a) este pozitiv definită dacă şi numai dacă există
un număr m > 0 a.̂ı.

d2f(a)(h) ≥ m · ‖h‖2,∀h ∈ Rk.

mi Demonstraţie. Suficienţa condiţiei este evidentă; ı̂ntr-adevăr, din
relaţia d2f(a)(h) ≥ m ·‖h‖2,∀h ∈ Rk rezultă că d2f(a)(h) > 0,∀h ∈ Rk\{0}.

Să presupunem acum că d2f(a) este pozitiv definită.
Fie C = {h ∈ Rk : ‖h‖ = 1} “cercul” cu centrul ı̂n origine şi rază 1

din Rk; C este mulţime mărginită şi ı̂nchisă, deci este o mulţime compactă
(teorema 1.3.33).
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d2f(a) : C → R, d2f(a)(h) =
k∑

i,j=1

∂2f

∂xi∂xj

(a)hihj,∀h = (h1, ..., hk) ∈ C,

este o funcţie continuă pe C. Rezultă atunci din teorema lui Weierstrass
(corolarul 2.3.9) că există h0 ∈ C a.̂ı. d2f(a)(h) ≥ d2f(a)(h0). Deoarece
h0 6= 0 (‖h0‖ = 1), m = d2f(a)(h0) > 0.

Fie acum h ∈ Rk \ {0}; atunci
1

‖h‖
· h ∈ C de unde rezultă că

d2f(a)

(
1

‖h‖
· h

)
≥ m.

Dar d2f(a)

(
1

‖h‖
· h

)
=

1

‖h‖2
· d2f(a)(h) de unde obţinem

d2f(a)(h) ≥ m · ‖h‖2,∀h ∈ Rk \ {0}.

Deoarece inegalitatea este evidentă pentru h = 0, rezultă că ea este verificată
pentru orice h ∈ Rk.

�

Ŝıntem acum ı̂n măsură să prezentăm condiţii suficiente de extrem pentru
funcţii reale de mai multe variabile.

3.5.10 Teoremă. Fie A ⊆ Rk o mulţime deschisă şi convexă, fie f : A → R
o funcţie de clasă C2 pe A şi fie a ∈ A un punct critic pentru f (df(a) = 0).

1). Dacă d2f(a) este pozitiv definită atunci a este un punct de minim
local pentru f .

2). Dacă d2f(a) este negativ definită atunci a este un punct de maxim
local pentru f .

3). Dacă d2f(a) este nedefinită atunci a nu este un punct de extrem local
pentru f .

Demonstraţie. Aplicăm funcţiei f formula lui Taylor de ordin 1 (coro-
larul 3.4.4); rezultă că, ∀x ∈ A,∃ cx ∈ [a, x] a.̂ı.

f(x)− f(a) = df(a)(x− a) +
1

2
· d2f(cx)(x− a).

Deoarece a este punct critic pentru f , df(a) = 0 şi astfel relaţia de mai
sus se scrie:

(1) f(x)− f(a) =
1

2
· d2f(a)(x− a) +

1

2
·
[
d2f(cx)(x− a)− d2f(a)(x− a)

]︸ ︷︷ ︸
E

.
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Fie x ∈ A \ {a}; vom exprima ı̂n alt fel paranteza pătrată E din relaţia (1)
de mai sus.

E =
k∑

i,j=1

∂2f

∂xi∂xj

(cx)(xi − ai)(xj − aj)−
k∑

i,j=1

∂2f

∂xi∂xj

(a)(xi − ai)(xj − aj) =

=
k∑

i,j=1

[
∂2f

∂xi∂xj

(cx)−
∂2f

∂xi∂xj

(a)

]
(xi − ai)(xj − aj) =

=
k∑

i,j=1

[
∂2f

∂xi∂xj

(cx)−
∂2f

∂xi∂xj

(a)

]
· xi − ai

‖x− a‖
· xj − aj

‖x− a‖
· ‖x− a‖2.

Definim acum funcţia α : A → R prin

α(x) =


k∑

i,j=1

[
∂2f

∂xi∂xj

(cx)−
∂2f

∂xi∂xj

(a)

]
· xi − ai

‖x− a‖
· xj − aj

‖x− a‖
, x 6= a

0 , x = a

.

Atunci relaţia (1) se scrie

(2) f(x)− f(a) =
1

2
· d2f(a)(x− a) +

1

2
· α(x) · ‖x− a‖2.

1). Să presupunem acum că d2f(a) este pozitiv definită; din propoziţia
3.5.9, există m > 0 a.̂ı. d2f(a)(h) ≥ m‖h‖2,∀h ∈ Rk. Deoarece f ∈ C2(A),

limx→0
∂2f

∂xi∂xj

(cx) =
∂2f

∂xi∂xj

(a),∀i, j = 1, ..., k şi cum
xi − ai

‖x− a‖
· xj − aj

‖x− a‖
≤ 1

rezultă că limx→a α(x) = α(a) = 0.

Atunci există o sferă deschisă S(a, r) a.̂ı., ∀x ∈ S(a, r),−m

2
< α(x) <

m

2
.

Din (2) obţinem

f(x)− f(a) ≥ m

2
‖x− a‖2 − m

4
‖x− a‖2 =

m

4
‖x− a‖2 ≥ 0,∀x ∈ S(a, r),

ceea ce arată că a este un punct de minim local pentru f .
2). Cum d2f(a) este negativ definită, (−d2f(a)) este pozitiv definită şi

deci există m > 0 a.̂ı. d2f(a)(h) ≤ (−m)‖h‖2,∀h ∈ Rk. În continuare
demonstraţia se face la fel ca la punctul precedent.
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3). d2f(a) fiind nedefinită, există h, h′ ∈ Rk a.̂ı. d2f(a)(h) > 0 şi
d2f(a)(h′) < 0. Fie δ > 0 a.̂ı. ∀t ∈ (−δ, δ), x = a + th, x′ = a + th′ ∈ A
(a este punct interior pentru A).

Înlocuind ı̂n relaţia (2) şi ţin̂ınd cont că d2f(a)(th) = t2d2f(a)(h),∀t ∈
R,∀h ∈ Rk, obţinem, ∀t ∈ (−δ, δ):

f(a + th)− f(a) =
1

2
· d2f(a)(h) · t2 +

1

2
· α(a + th) · t2 · ‖h‖2,

f(a + th′)− f(a) =
1

2
· d2f(a)(h′) · t2 +

1

2
· α(a + th′) · t2 · ‖h′‖2.

Deoarece limx→a α(x) = 0, putem găsi r a.̂ı. 0 < r < δ şi ∀t ∈ (−r, r),

− 1

2
· d2f(a)(h) < α(a + th) · ‖h‖2 iar α(a + th′) · ‖h′‖2 < −1

2
· d2f(a)(h′).

Rezultă atunci că ∀t ∈ (−r, r),

f(a + th)− f(a) >
1

4
· d2f(a)(h) · t2 > 0

iar

f(a + th′)− f(a) <
1

4
· d2f(a)(h′) · t2 < 0.

Deci ı̂n orice vecinătate a punctului a găsim şi valori ale lui f mai mari ca
f(a) şi valori mai mici ca f(a). Rezultă că a nu este punct de extrem local
pentru f .

�

În cazul particular k = 2 condiţiile din teorema precedentă se pot pune
sub o formă uşor de verificat ı̂n cazuri concrete.

3.5.11 Corolar. Fie A ⊆ R2 o mulţime deschisă şi convexă, f : A → R o
funcţie de clasă C2 pe A şi fie (a, b) ∈ A un punct critic pentru f .

Notăm M =
∂2f

∂x2
(a, b), N =

∂2f

∂x∂y
(a, b), P =

∂2f

∂y2
(a, b).

1). Dacă N2−MP < 0 şi M > 0 atunci (a, b) este punct de minim local.
2). Dacă N2−MP < 0 şi M < 0 atunci (a, b) este punct de maxim local.
3). Dacă N2 −MP > 0 atunci (a, b) nu este punct de extrem local.

Demonstraţie. Concluzia corolarului rezultă din teorema precedentă şi
din observaţia 3.5.8.

Vom da ı̂n cazul general, fără demonstraţie, condiţii suficiente de extrem.
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3.5.12 Definiţie. Fie f : A ⊆ Rk → R o funcţie diferenţiabilă de două ori
ı̂n a ∈ Å; atunci matricea

Hf (a) =



∂2f

∂x2
1

(a)
∂2f

∂x1∂x2

(a) . . .
∂2f

∂x1∂xk

(a)

∂2f

∂x2∂x1

(a)
∂2f

∂x2
2

(a) . . .
∂2f

∂x2∂xk

(a)

...
...

. . .
...

∂2f

∂xk∂x1

(a)
∂2f

∂xk∂x2

(a) . . .
∂2f

∂x2
k

(a)


se numeşte hessiana lui f ı̂n a (de la numele matematicianului german
Ludwig Otto Hess (1811-1874)).

3.5.13 Corolar (condiţiile lui Sylvester1). Fie A ⊆ Rk o mulţime deschisă
şi convexă, f : A → R o funcţie de clasă C2 pe A, a ∈ A un punct critic

pentru f şi d1 =
∂2f

∂x2
1

(a), d2 =

∣∣∣∣∣∣∣∣
∂2f

∂x2
1

(a)
∂2f

∂x1∂x2

(a)

∂2f

∂x2∂x1

(a)
∂2f

∂x2
2

(a)

∣∣∣∣∣∣∣∣ , ..., dk = det(Hf (a)),

minorii principali ai matricii hessiene.
1). Dacă d1, d2, ..., dk ŝınt toţi pozitivi atunci a este un punct de minim

local pentru f .
2). Dacă −d1, d2, ..., (−1)kdk ŝınt toţi pozitivi atunci a este un punct de

maxim local pentru f .

Ŝınt situaţii ı̂n care, aşa cum vom remarca ı̂n exemplul următor, corolarul
precedent nu este aplicabil.

3.5.14 Exemplu. Fie funcţia f : R3 → R, f(x, y, z) = x5 + y5 + z5 −
5xyz, ∀(x, y, z) ∈ R3. Pentru a găsi punctele critice ale funcţiei f rezolvăm
sistemul obţinut din anularea derivatelor parţiale ale funcţiei.

∂f

∂x
= 5x4 − 5yz = 0

∂f

∂y
= 5y4 − 5xz = 0

∂f

∂z
= 5z4 − 5xy = 0

.

1James Joseph Sylvester (1814-1897), matematician englez.
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Mulţimea soluţiilor sistemului este S = {(1, 1, 1), (−1,−1,−1), (0, 0, 0)}.
Derivatele parţiale de ordin doi ŝınt:

∂2f

∂x2
= 20x3 ,

∂2f

∂x∂y
= −5z

∂2f

∂y2
= 20y3 ,

∂2f

∂x∂z
= −5y

∂2f

∂z2
= 20z3 ,

∂2f

∂y∂z
= −5x

.

Deci matricea hessiană asociată lui f ı̂n punctul critic (1, 1, 1) ∈ A este

H1 =

20 −5 −5
−5 20 −5
−5 −5 20

 . Minorii principali ai acestei matrici ŝınt pozitivi

deci (1, 1, 1) este un punct de minim local pentru f .
Matricea hessiană asociată lui f ı̂n punctul critic (−1,−1,−1) ∈ A este

H2 =

−20 5 5
5 −20 5
5 5 −20

 . Aici d1 < 0, d2 > 0 iar d3 < 0. Deci (−1,−1,−1)

este un punct de maxim local pentru f .
Matricea hessiană ı̂n (0, 0, 0) este matricea nulă; deci corolarul precedent

nu poate preciza natura acestui punct critic.
f(0, 0, 0) = 0 iar f(x, x, x) = 3x5 − 5x3 = x3(3x2 − 5). Se observă că,

pe orice vecinătate V a originii şi ∀(x, x, x) ∈ V , f(x, x, x) ia valori pozitive
dacă x < 0 şi valori negative dacă x > 0. Rezultă că acest punct critic este
un punct şa.
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Diferenţiabilitatea funcţiilor de
mai multe variabile

3.6 Teorema de inversare locală

Vom prezenta ı̂ntâi câteva proprietăţi legate de inversarea operatorilor liniari.

3.6.1 Propoziţie. Fie T : Rk → Rl un operator liniar şi fie AT matricea
asociată (T (x) = AT · x, ∀x ∈ Rk).

a). Dacă T este injectiv atunci k ≤ l.
b). T este bijectiv dacă şi numai dacă k = l şi AT este nesingulară.

Demonstraţie. a). Am arătat că un operator liniar T este injectiv dacă
şi numai dacă T (x) = 0Rl =⇒ x = 0Rk . Ecuaţia vectorială T (x) = 0Rl este

echivalentă cu AT · x = 0Rl sau, dacă AT =

 a11 · · · a1k

· · · · · · · · ·
al1 · · · alk

, cu sistemul

(S)


a11x1 + · · ·+ a1kxk = 0
· · · · · · · · · · · · · · ·
al1x1 + · · ·+ alkxk = 0

În general acest sistem are∞k−r soluţii, unde r = rangAT ; această notaţie
vrea să spună că soluţia generală a sistemului depinde de k − r parametri
care variază independent ı̂n R.

Deoarece sistemul (S) are soluţia unică x = 0Rk rezultă k = r ≤ min{k, l}
de unde k ≤ l.

104
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b). Necesitatea. Fie T un operator liniar bijectiv; atunci T este injectiv
şi T−1 : Rl → Rk este de asemenea operator liniar şi injectiv. Rezultă din a)
k ≤ l şi l ≤ k, deci k = l.

Matricea AT este deci ı̂n acest caz patratică şi pentru ca sistemul (S) să
aibă soluţie unică trebuie ca detAT 6= 0 şi deci AT este nesingulară.

Suficienţa. Fie k = l şi AT matrice nesingulară. Atunci sistemul (S) are
numai soluţia banală ceea ce ne asigură că T este injectiv.

Oricare ar fi y = (y1, · · · , yk) ∈ Rk sistemul

(S ′)


a11x1 + · · ·+ a1kxk = y1

· · · · · · · · · · · · · · ·
ak1x1 + · · ·+ akkxk = yk

are, conform teoremei lui Cramer, soluţie unică. Deci, oricare ar fi y ∈ Rk

există x ∈ Rk aşa fel ı̂ncât T (x) = y ceea ce arată că T este surjectiv.
Deci T este un operator liniar şi bijectiv.

�

3.6.2 Observaţie. Fie A ⊆ Rk, a ∈ Å şi f : A → Rl, f = (f1, · · · , fl), o
funcţie diferenţiabilă ı̂n a. Diferenţiala funcţiei f ı̂n a, df(a) : Rk → Rl, este
un operator liniar a cărei matrice asociată este matricea jacobiană a lui f ı̂n

a: Jf (a) =

 ∂f1

∂x1
(a) · · · ∂f1

∂xk
(a)

· · · · · · · · ·
∂fl

∂x1
(a) · · · ∂fl

∂xk
(a)

 . Propoziţia precedentă ne asigură că

df(a) este bijectiv dacă şi numai dacă k = l şi Jf (a) este nesingulară; aceasta

ı̂nseamnă că jacobianul lui f ı̂n a,
D(f1, · · · , fk)

D(x1, · · · , xk)
(a) = detJf (a), este diferit

de zero.

3.6.3 Definiţie. Fie U şi V două mulţimi deschise din Rk; o aplicaţie
f : U → V se numeşte difeomorfism sau izomorfism diferenţial ı̂ntre
mulţimile U şi V dacă f este bijectivă, f ∈ C1(U) şi f−1 ∈ C1(V ).

3.6.4 Observaţie. Criteriul de diferenţiabilitate ne asigură că orice difeo-
morfism ı̂ntre două mulţimi deschise U şi V este o aplicaţie diferenţiabilă ı̂n
toate punctele mulţimii U ; inversa acestei aplicaţii este de asemenea difeo-
morfism ı̂ntre V şi U şi deci este diferenţiabilă pe V .

Teorema următoare caracterizează difeomorfismele utilizând proprietatea
de bijectivitate a diferenţialei.
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3.6.5 Teoremă. Fie U şi V doi deschişi din Rk şi fie f : U → V o aplicaţie
bijectivă de clasă C1 pe U (f ∈ C1(U)).

Funcţia f este un difeomorfism ı̂ntre U şi V dacă şi numai dacă
1. f−1 : V → U este continuă pe V şi
2. df(a) : Rk → Rk este operator liniar şi bijectiv, oricare ar fi a ∈ U .

Demonstraţie. Necesitatea. Dacă f este difeomorfism ı̂ntre U şi V
atunci, din observaţia precedentă, f−1 : V → U este diferenţiabilă pe V şi
deci este continuă pe V .

f−1 ◦ f = idU : U → U, idU(x) = x, ∀x ∈ U (aplicaţia identică pe U);
idU este diferenţiabilă pe U şi, oricare ar fi a ∈ U, d(idU)(a) : Rk → Rk

este aplicaţia identică pe Rk (idRk : Rk → Rk, idRk(h) = h,∀h ∈ Rk). Ma-
tricea asociată acestui operator liniar (matricea jacobiană a sa) este matricea

unitate Ik =

 1 · · · 0
· · ·

0 · · · 1

.

Deoarece f şi f−1 sunt diferenţiabile (f este difeomorfism) putem aplica
formula de diferenţiere a funcţiilor compuse:

idRk = d(idU)(a) = d(f−1)(f(a)) ◦ df(a).

Matricile jacobiene asociate acestor operatori se vor găsi atunci ı̂n relaţia:

Ik = Jf−1(f(a)) · Jf (a),

de unde
1 = detIk = detJf−1(f(a)) · detJf (a).

De aici rezultă că detJf (a) 6= 0 şi deci că Jf (a) este nesingulară. Observaţia
3.6.2 ne asigură atunci că df(a) : Rk → Rk este operator liniar şi bijectiv.

Suficienţa. Fie f : U → V o bijecţie de clasă C1 pe U astfel ı̂ncât f−1

este continuă pe V şi, oricare ar fi a ∈ U , df(a) : Rk → Rk este operator
liniar şi bijectiv. Pentru a demonstra că f este difeomorfism ı̂ntre U şi V
este suficient să arătăm că f−1 ∈ C1(V ).

Vom demonstra ı̂ntâi că f−1 este diferenţiabilă pe V .
Fie b ∈ V un punct arbitrar şi fie a = f−1(b) ∈ U ; deoarece f ∈ C1(U), f

este diferenţiabilă pe U şi deci f este diferenţiabilă ı̂n a. Rezultă că există
α : U → Rk continuă şi nulă ı̂n a astfel ı̂ncât

(1) f(x) = f(a) + df(a)(x− a) + ||x− a|| · α(x),∀x ∈ U.
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Vom nota df(a) = T ; din ipoteză T este un operator liniar şi bijectiv pe Rk.
Oricare ar fi y ∈ V există x ∈ U astfel ı̂ncât f(x) = y şi atunci, din (1),

obţinem:

(2) y − b = T (x− a) + ||x− a|| · α(x).

Aplicaţia T−1 : Rk → Rk este de asemenea operator liniar şi, aplicând T−1

ı̂n relaţia (2), obţinem:

(3) T−1(y)− T−1(b) = x− a + ||x− a|| · T−1(α(x)),

sau

(4) x− a = T−1(y)− T−1(b)− ||x− a|| · T−1(α(x)).

Deoarece T−1 este aplicaţie liniară ea este lipschitziană şi deci există o
constantă L > 0 astfel ı̂ncât ||T−1(y) − T−1(b)|| ≤ L · ||y − b||. Aplicând
norma ı̂n relaţia (4) şi folosind inegalitatea precedentă obţinem:

||x− a|| ≤ L · ||y − b||+ ||x− a|| · ||T−1(α(x))||,

de unde

(5)
||x− a||
||y − b||

≤ L

1− ||T−1(α(x))||
.

Observăm că x = f−1(y) şi, deoarece f−1 este continuă, y → b =⇒ x =
f−1(y) → f−1(b) = a; atunci

(6) lim
y→b

||T−1(α(x))|| = ||T−1(α(a))|| = 0

şi deci există δ > 0 astfel ı̂ncât

||T−1(α(f−1(y)))|| < 1

2
,∀y ∈ S(b, δ).

Din (5) rezultă

(7)
||x− a||
||y − b||

< 2L, ∀y ∈ S(b, δ).

Relaţia (4) se poate rescrie

(8) f−1(y) = f−1(b) + T−1(y − b)− ||x− a|| · T−1(α(x)).
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Fie funcţia β : V → Rk definită prin

β(y) =


1

||y − b||
·
[
f−1(y)− f−1(b)− T−1(y − b)

]
, y 6= b

0 , y = b
.

Atunci, din (7),

(9) β(y) = −||x− a||
||y − b||

· T−1(α(x)).

Din (6) şi (7) rezultă că limy→b β(y) = 0 = β(b) iar din definiţia lui β

(10) f−1(y) = f−1(b) + T−1(y − b) + ||y − b|| · β(y),∀y ∈ V,

ceea ce arată că f−1 este diferenţiabilă ı̂n ı̂n b, oricare ar fi b ∈ V . Deci f−1

este diferenţiabilă pe V .
Deoarece f ◦ f−1 = idV , aplicând formula de diferenţiere a compunerii,

(11) Jf (f
−1(y)) · Jf−1(y) = Ik,∀y ∈ V.

Deoarece df(f−1(y)) este bijectivă, Jf (f
−1(y)) este nesingulară şi deci in-

versabilă. Din relaţia (11) deducem:

(12) Jf−1(y) =
[
Jf

(
f−1(y)

)]−1
,∀y ∈ V.

Elementele matricii Jf (f
−1(y)) sunt de forma

(
∂fi

∂xj

◦ f−1

)
(y); f−1 fiind con-

tinuă, acestea vor fi funcţii continue de variabila y, oricare ar fi i, j = 1, · · · , k
(am notat f = (f1, · · · , fk) şi am ţinut cont că f ∈ C1(U), deci că ∂fi

∂xj
sunt

continue pe U). Ţinând cont de modul ı̂n care se construieşte inversa unei
matrici rezultă din (12) că elementele matricii Jf−1(y) sunt funcţii continue
de y pe V deci că f−1 ∈ C1(V ).

Astfel rezultă că f este un difeomorfism ı̂ntre deschişii U şi V .
�

3.6.6 Observaţie. Relaţia (12) din demonstraţia teoremei precedente ne

arată că, oricare ar fi y ∈ V , df−1(y) =
[
df(f−1(y))

]−1
.

În general aplicaţiile f : U → V pe care le ı̂ntâlnim ı̂n practică nu sunt
aplicaţii bijective astfel ı̂ncât nu este ı̂n general posibil să definim inversa
lui f pe mulţimea V . Ne punem problema dacă această funcţie nu poate fi
inversată măcar local, pe vecinătatea unor puncte din U . Teorema următoare
dă condiţii suficiente ı̂n care o astfel de inversare locală este posibilă.
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3.6.7 Teoremă (teorema de inversare locală). Fie D un deschis din Rk şi
fie f : D → Rk, f ∈ C1(D).

Dacă a ∈ D este un punct ı̂n care df(a) : Rk → Rk este bijectivă atunci
există o mulţime deschisă U ı̂n Rk, a ∈ U ⊆ D, aşa fel ı̂ncât V = f(U) este
deschisă şi f este un difeomorfism ı̂ntre U şi V .

Demonstraţia teoremei precedente este destul de laborioasă şi nu o vom
prezenta.

3.6.8 Observaţii. (i) Să remarcăm că, ı̂n ipotezele teoremei, f este in-
versabilă local pe U şi f−1 este de clasă C1 pe mulţimea deschisă V , vecină-
tate a punctului f(a). Oricare ar fi y ∈ V , există un punct unic x ∈ U aşa
fel ı̂ncât f(x) = y; f este diferenţiabilă pe U şi atunci, din teorema 3.6.5,
df(x) este o bijecţie.

(ii) Să presupunem k = 1; ı̂n acest caz f : D ⊆ R → R este de clasă C1

pe D dacă f este derivabilă şi are derivată continuă pe D. Fie a ∈ D astfel
ı̂ncât df(a) : R → R să fie bijectivă. Deoarece df(a)(h) = f ′(a) · h,∀h ∈ R,
df(a) este bijectivă dacă şi numai dacă f ′(a) 6= 0. Deci ı̂n acest caz teorema
precedentă se formulează astfel: Dacă f este de clasă C1 pe D atunci pentru
orice punct a ∈ D pentru care f ′(a) 6= 0 există o vecinătate deschisă U aşa
fel ı̂ncât restricţia lui f la U este inversabilă şi are inversa derivabilă. În
plus (f−1)′(b) = 1

f ′(f−1(b))
.

3.6.9 Exemplu. Să rezolvăm sistemul{
x2

1 + x2
2 = y1

x2
1 − x2

2 = y2

unde y1, y2 sunt numere arbitrare ı̂n R dar fixate.
Sistemul de mai sus poate fi transformat ı̂ntr-o ecuaţie vectorială. Definim

f : R2 → R2 prin f(x1, x2) = (x2
1 + x2

2, x
2
1 − x2

2) şi atunci sistemul de mai
sus este echivalent cu ecuaţia vectorială f(x) = y, unde x = (x1, x2) iar
y = (y1, y2).

Observăm că f ∈ C1(R2) şi că

Jf (x) =

(
2x1 2x2

2x1 −2x2

)
,∀x = (x1, x2) ∈ R2.

Rezultă că df(a) este bijectivă dacă şi numai dacă Jf (a) este nesingulară
ceea ce revine la −8a1a2 6= 0 (a = (a1, a2)). Deci df(a) este bijectivă dacă şi
numai dacă a nu se găseşte pe axele de coordonate.
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Să luăm un punct a din cadranul I (a1 > 0, a2 > 0); atunci putem
considera U = {(x1, x2) : x1 > 0, x2 > 0} (̂ıntreg cadranul I). Din sistem
rezultă că y1+y2

2
= x2

1 > 0 şi y1−y2

2
= x2

2 > 0; de aici f(U) = V unde
V = {(y1, y2) ∈ R2 : −y1 < y2 < y1}.

6

-

6

-

x2

x1

y1

y2

-

�

f

f−1

U
V

Restricţia funcţiei f la U este inversabilă şi f−1 : V → U este definită
prin

f−1(y1, y2) =

(√
y1 + y2

2
,

√
y1 − y2

2

)
.

3.7 Funcţii definite implicit

Fie A ⊆ R2, F : A → R şi (x0, y0) ∈ Å a.̂ı. F (x0, y0) = 0. Ne punem proble-
ma găsirii de condiţii ı̂n care, local (pe o vecinătate a punctului (x0, y0)), să
putem rezolva ecuaţia F (x, y) = 0 obţin̂ındu-l pe y funcţie de x.

Mai exact, ne interesează ı̂n ce condiţii putem găsi două intervale deschise
I, J ⊆ R, x0 ∈ I, y0 ∈ J, I × J ⊆ A şi o funcţie ϕ : I → J a.̂ı.

{(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I}.

Observăm că membrul doi din relaţia de mai sus este graficul funcţiei ϕ;
astfel problema se poate formula astfel: ı̂n ce condiţii mulţimea
{(x, y) ∈ I × J : F (x, y) = 0} reprezintă graficul unei funcţii ?

În cazul ı̂n care există o astfel de funcţie ϕ ea se numeşte funcţie definită
implicit sau funcţie implicită.

Ne interesează deci să vedem ı̂n ce condiţii ecuaţia F (x, y) = 0 defineşte
local o funcţie implicită; ı̂n cazul ı̂n care această funcţie există, este ea deriv-
abilă ?
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Exemplul următor arată că nu putem explicita ecuaţia F (x, y) = 0 ı̂n
vecinătatea oricărui punct.

3.7.1 Exemplu. Fie F : R2 → R, F (x, y) = x2 + y2 − 1,∀(x, y) ∈ R2.
1). Fie (x0, y0) = (0, 1) atunci există I = (−1, 1), J = (0, 2), 0 ∈ I, 1 ∈ J

şi există funcţia ϕ : I → J, ϕ(x) =
√

1− x2,∀x ∈ I a.̂ı.

{(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I}.

2). Fie acum (x0, y0) = (1, 0); să presupunem că există intervalele deschise
I, J ⊆ R, 1 ∈ I, 0 ∈ J şi că există o funcţie ϕ : I → J a.̂ı.
{(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I}.

Atunci există n ∈ N a.̂ı., xn =
√

1− 1
n2 ∈ I, iar − 1

n
, 1

n
∈ J şi astfel

(xn,− 1
n
), (xn,

1
n
) ∈ {(x, y) ∈ I × J : F (x, y) = 0};

rezultă atunci că ϕ(xn) = − 1
n

şi ϕ(xn) = 1
n
, ceea ce este absurd.

Formulăm următoarea teoremă de existenţă şi derivabilitate pentru funcţii
de o variabilă definite implicit.

3.7.2 Teoremă (teorema funcţiilor implicite). Fie D ⊆ R2 o mulţime de-
schisă, F : D → R şi (x0, y0) ∈ D a.̂ı. să fie verificate următoarele condiţii:

1). F (x0, y0) = 0,
2). F ∈ C1(D),

3).
∂F

∂y
(x0, y0) 6= 0.

Atunci există intervalele deschise I, J ⊆ R cu (x0, y0) ∈ I × J ⊆ D şi
există o funcţie ϕ : I → J cu proprietăţile:

a). {(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I},
b). ϕ este de clasă C1 pe I şi, ∀x ∈ I,

ϕ′(x) = −

∂F

∂x
(x, ϕ(x))

∂F

∂y
(x, ϕ(x))

.

Demonstraţie. Vom prezenta două demonstraţii pentru această teo-
remă.

I. Prima demonstraţie se bazează pe proprietatea de semn local a funcţi-
ilor continue şi pe proprietatea lui Darboux (o funcţie continuă care ia valori
de semn contrar la capetele unui interval se anulează pe acel interval).
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Deoarece
∂F

∂y
este continuă pe D şi

∂F

∂y
(x0, y0) 6= 0 atunci există o

vecinătate a lui (x0, y0) pe care
∂F

∂y
are acelaşi semn ca ı̂n (x0, y0); să pre-

supunem că acest semn este pozitiv.
Fie deci I1 = [a, b] şi J = [c, d] astfel ı̂ncât

(x0, y0) ∈ (a, b)× (c, d) ⊆ I1×J ⊆ D şi
∂F

∂y
(x, y) > 0,∀(x, y) ∈ (a, b)× (c, d).

6

-

rr
r

qr

r

y

(x0, y0)
ϕ(x)

d

c

a b
I

(x0, c)

x x0 x

(x0, d)r

*k

Fie g : [c, d] → R, g(y) = F (x0, y); atunci g este derivabilă pe [c, d] şi

g′(y) =
∂F

∂y
(x0, y),∀y ∈ [c, d].

Rezultă că funcţia g este strict crescătoare pe [c, d] şi, cum g(y0) =
F (x0, y0) = 0, g(c) < 0 < g(d).

Funcţiile hc, hd : [a, b] → R, hc(x) = F (x, c), hd(x) = F (x, d),∀x ∈ [a, b]
sunt continue şi

hc(x0) = F (x0, c) = g(c) < 0 < g(d) = F (x0, d) = hd(x0).

Rezultă că există o vecinătate a punctului x0 pe care funcţia hc este negativă
şi hd este pozitivă. Fie deci I un interval deschis a.̂ı. x0 ∈ I ⊆ (a, b) şi

F (x, c) = hc(x) < 0 < hd(x) = F (x, d),∀x ∈ I.

Deoarece pentru orice x ∈ I F (x, ·) este o funcţie continuă există ϕ(x) ∈ (c, d)
astfel ı̂ncât F (x, ϕ(x)) = 0. Pe de altă parte I× (c, d) ⊆ (a, b)× (c, d) şi deci,
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∀x ∈ I,
∂F

∂y
(x, y) > 0,∀y ∈ [c, d].

Atunci F (x, ·) este strict crescătoare pe [c, d] şi deci ϕ(x) = y este singurul
punct din intervalul [c, d] pentru care F (x, y) = 0.

Astfel am pus ı̂n evidenţă o funcţie ϕ : I → J = (c, d) aşa fel ı̂ncât,
oricare ar fi (x, y) ∈ I × J, F (x, y) = 0 ⇐⇒ y = ϕ(x) ceea ce este echivalent
cu egalitatea:

{(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I}.

Să demonstrăm ı̂ntâi că ϕ este continuă pe I.
Fie x1 ∈ I, ε > 0 şi c1 = ϕ(x1)− ε, d1 = ϕ(x1) + ε

6

-

rr

y

(x0, y0)
ϕ(x1)

d

c

I

x0 xx1

x1 − δ x1 + δ

-�

r
q

d1

c1

r
r

j 9

Din discuţia făcută mai sus asupra semnului lui F rezultă F (x1, c1) < 0 <
F (x1, d1). Utilizând iarăşi proprietatea de semn local a funcţiilor continue,
există δ > 0 aşa fel ı̂ncât oricare ar fi x ∈ (x1 − δ, x1 + δ), F (x, c1) < 0 =
F (x, ϕ(x)) < F (x, d1) şi atunci c1 = ϕ(x1)− ε < ϕ(x) < ϕ(x1) + ε = d1 sau
|ϕ(x) − ϕ(x1)| < ε. Rezultă că ϕ este continuă ı̂n x1 şi deci, cum x1 este
arbitrar ı̂n I, ϕ este continuă pe I.

Să arătăm acum că ϕ este derivabilă pe I.
Fixăm un punct x1 ∈ I şi fie y1 = ϕ(x1); (x1, y1) ∈ I ×J ⊆ D şi deoarece

F ∈ C1(D), F este diferenţiabilă ı̂n (x1, y1). Deci există o funcţie α : D → R
continuă şi nulă ı̂n (x1, y1) astfel ı̂ncât

F (x, y) = F (x1, y1) +
∂F

∂x
(x1, y1) · (x− x1) +

∂F

∂y
(x1, y1) · (y − y1)+

+α(x, y) ·
√

(x− x1)2 + (y − y1)2,∀(x, y) ∈ D.
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În particular, oricare ar fi x ∈ I, (x, ϕ(x)) ∈ D şi deci, ı̂nlocuind ı̂n relaţia
precedentă pe y cu ϕ(x) şi ţinând cont că F (x, ϕ(x)) = 0 = F (x1, y1),
obţinem

0 =
∂F

∂x
(x1, y1) · (x− x1) +

∂F

∂y
(x1, y1) · (ϕ(x)− ϕ(x1))+

+α(x, ϕ(x)) ·
√

(x− x1)2 + (ϕ(x)− ϕ(x1))2,∀x ∈ I

şi, cum
∂F

∂y
(x1, y1) > 0,

ϕ(x)− ϕ(x1)

x− x1

= −
∂F
∂x

(x1, y1)
∂F
∂y

(x1, y1)
− γ(x), unde

γ(x) =
α(x, ϕ(x))
∂F
∂y

(x1, y1)
·
√

(x− x1)2 + (ϕ(x)− ϕ(x1))2

x− x1

.

Evident |γ(x)| ≤ |α(x, ϕ(x))|
∂F
∂y

(x1, y1)
,∀x ∈ I. Deoarece ϕ este continuă, lim

x→x1

ϕ(x) =

ϕ(x1) = y1 şi deci lim
x→x1

α(x, ϕ(x)) = α(x1, y1) = 0; rezultă că lim
x→x1

γ(x) = 0

şi deci

lim
x→x1

ϕ(x)− ϕ(x1)

x− x1

= −
∂F
∂x

(x1, y1)
∂F
∂y

(x1, y1)
.

Cum x1 este arbitrar ı̂n I, ϕ este derivabilă pe I şi

ϕ′(x) = −
∂F
∂x

(x, ϕ(x))
∂F
∂y

(x, ϕ(x))
,∀x ∈ I.

Să observăm că ϕ este continuă pe I şi că
∂F

∂x
şi

∂F

∂y
sunt continue pe d;

atunci ϕ′ este continuă pe I şi deci ϕ ∈ C1(I).miII. Vom prezenta acum o demonstraţie bazată pe teorema de inversare
locală.

Fie f : D → R2 funcţia definită prin f(x, y) = (x, F (x, y)), oricare ar fi
(x, y) ∈ D. Observăm că f ∈ C1(D), f(x0, y0) = (x0, 0) şi

det (Jf (x0, y0)) =

∣∣∣∣∣∣
1 0

∂F

∂x
(x0, y0)

∂F

∂y
(x0, y0)

∣∣∣∣∣∣ =
∂F

∂y
(x0, y0) 6= 0.
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Rezultă că Jf (x0, y0) este nedegenerată şi deci că df(x0, y0) : R2 → R2 este
un operator liniar şi bijectiv. Conform teoremei de inversare locală există un
deschis U ⊆ R2 astfel ı̂ncât (x0, y0) ∈ U ⊆ D, V = f(U) este un deschis din
R2 şi f este un difeomorfism ı̂ntre U şi V .

Putem presupune fără să restrângem generalitatea că U este un produs
cartezian de două intervale deschise U = I ′ × J, x0 ∈ I ′ şi y0 ∈ J .

Deoarece V este deschisă şi f(x0, y0) = (x0, 0) ∈ V , există un interval
deschis I1 ⊆ I ′ şi un interval deschis J1 astfel ı̂ncât (x0, 0) ∈ I1 × J1 ⊆ V .

(x0, y0) = f−1(x0, 0) ⊆ f−1(I1 × J1) ⊆ U .

Deoarece f este aplicaţie continuă, f−1(I1 × J1) este o mulţime deschisă
şi deci există I - un interval deschis - astfel ı̂ncât x0 ∈ I ⊆ I1 şi există un
interval deschis J ′ aşa fel ı̂ncât (x0, y0) ∈ I × J ′ ⊆ f−1(I1 × J1).

Fie p2 : R2 → R, p2(u, v) = v, ∀(u, v) ∈ R2 (proiecţia pe coordonata a
doua). Atunci p2 este operator liniar şi deci este diferenţiabil pe R2.

Oricare ar fi x ∈ I, (x, 0) ∈ I × J1 ⊆ I1 × J1, de unde

f−1(x, 0) ∈ f−1(I1 × J1) ⊆ U = I ′ × J

şi deci p2(f
−1(x, 0)) ∈ J .

Definim atunci ϕ : I → J prin ϕ(x) = p2(f
−1(x, 0)),∀x ∈ I.

Pentru orice (x, y) ∈ I × J, F (x, y) = 0 ⇐⇒ f(x, y) = (x, 0) ⇐⇒ (x, y) =
f−1(x, 0) ⇐⇒ y = p2(x, y) = p2(f

−1(x, 0)) = ϕ(x) ⇐⇒ (x, y) = (x, ϕ(x)),
pentru orice x ∈ I.

Deci ϕ verifică condiţia a) din concluzia teoremei. În plus, oricare ar fi
x ∈ I, F (x, ϕ(x)) = 0. Deoarece ϕ este o compunere de funcţii diferenţiabile
(ϕ = p2 ◦ f−1 ◦ g, unde g : I → I ×J1, g(x) = (x, 0)) ea este derivabilă şi deci
putem deriva relaţia de mai sus după x; obţinem:

∂F

∂x
(x, ϕ(x)) +

∂F

∂y
(x, ϕ(x)) · ϕ′(x) = 0

de unde găsim şi relaţia b) din concluzia teoremei.

F ∈ C1(D) ceea ce antrenează continuitatea lui ϕ′ pe I.
�

3.7.3 Observaţii. 1). În exemplul 3.7.1, 2) nu este verificată condiţia 3).

din teorema precedentă; ı̂ntr-adevăr,
∂F

∂y
(1, 0) = 2y|y=0 = 0 şi, aşa cum am

văzut, nu este posibilă explicitarea ecuaţiei F (x, y) = 0 ı̂n (1, 0).



116 Capitolul 3. Diferenţiabilitatea funcţiilor

2). Dacă F ∈ C2(D) atunci funcţia ϕ este de clasă C2 pe I; derivata a
doua se obţine folosind formula de derivare a funcţiilor compuse ı̂n relaţia
care dă derivata lui ϕ.

ϕ′′(x) = −

[
∂2F

∂x2
+

∂2F

∂y∂x
· ϕ′(x)

]
· ∂F

∂y
− ∂F

∂x
·
[

∂2F

∂x∂y
+

∂2F

∂y2
· ϕ′(x)

]
(

∂F

∂y

)2 .

Dacă ı̂n formula de mai sus ı̂nlocuim valoarea derivatei lui ϕ obţinem:

ϕ′′(x) = −

∂2F

∂x2
·
(

∂F

∂y

)2

− 2
∂2F

∂x∂y
· ∂F

∂x
· ∂F

∂y
+

∂2F

∂y2
·
(

∂F

∂x

)2

(
∂F

∂y

)3

unde toate derivatele parţiale ale lui F ŝınt calculate ı̂n (x, ϕ(x)).
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Diferenţiabilitatea funcţiilor de
mai multe variabile

3.7 Funcţii definite implicit

3.7.4 Exemplu (foliul lui Descartes). Să considerăm funcţia definită im-
plicit prin ecuaţia F (x, y) = x3 + y3 − 3xy = 0. Ecuaţia dată este simetrică
ı̂n (x, y) ceea ce ı̂nseamnă că {(x, y) ∈ R2 : F (x, y) = 0} = {(y, x) ∈ R2 :
F (x, y) = 0}. Rezultă că mulţimea {(x, y) ∈ R2 : F (x, y) = 0} este sime-
trică faţă de prima bisectoare. Punctele ı̂n care prima bisectoare ı̂ntâlneşte
mulţimea de mai sus sunt (0, 0) şi (3

2
, 3

2
). Vom figura porţiunea din mulţime

plasată deasupra bisectoarei ı̂ntâi (y ≥ x). Utilizând şirul lui Rolle putem
arăta că, oricare ar fi x ∈ (−∞, 3

2
], există un unic y ≥ x aşa fel ı̂ncât

F (x, y) = 0.

F ∈ C1(R2) şi
∂F

∂y
= 3y2−3x. Dacă rezolvăm sistemul

{
y2 − x = 0
x3 + y3 − 3xy = 0

obţinem punctele ı̂n care nu putem aplica teorema funcţiilor implicite: (0, 0),
( 3
√

4, 3
√

2). Pentru orice alt punct (x0, y0) ∈ R2 se obţin intervalele I şi J şi

funcţia ϕ : I → J derivabilă cu derivata ϕ′(x) =
x2 − y

x− y2
,∀x ∈ I. Punctele

critice se obţin rezolv̂ınd sistemul

{
x2 − y = 0
x3 + y3 − 3xy = 0

care ne conduce la

soluţia ( 3
√

2, 3
√

4); dacă observăm că ϕ′′( 3
√

2) < 0, rezultă că punctul critic de
mai sus este un punct de maxim local.

Notând y = tx ı̂n F (x, y) = 0, obţinem ecuaţiile parametrice ale foliului

117
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lui Descartes:


x =

3t

t3 + 1

y =
3t2

t3 + 1

, t ∈ R. Tabelul de variaţie al lui x ca funcţie

de t este următorul:

x′(t)

x(t)

−∞ −1 0

+ +

0 0::

t

+∞
−∞

Se observă că x → −∞⇔ t → −1, t > −1; atunci putem să calculăm panta

şi ordonata la origine a asimptotei oblice la graficul lui ϕ : m = limx→−∞
y

x
=

lim
t→−1

t = −1 şi n = limx→−∞(y −mx) = limt→−1
3(t2 + t)

t3 + 1
= −1. Rezultă că

graficul funcţiei admite ca asimptotă dreapta de ecuaţie x + y + 1 = 0.

Tabelul de variaţie al singurei soluţii y = ϕ(x) ≥ x a ecuaţiei F (x, y) = 0
va fi:

ϕ′(x)

ϕ(x)

−∞

+∞

x 0 3
√

2
3
2

− 0 −
0 3

√
4

3
2

j * j

+
+∞

0

Graficul funcţiei implicite ϕ arată ca ı̂n figura de mai jos:

-

q
q

( 3
√

2, 3
√

4)

(0, 0)

x

y

pq
q

c
c

s (3
2
, 3

2
)

6

Dacă simetrizăm acum graficul de mai sus faţă de prima bisectoare obţinem
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graficul foliului lui Descartes.

6

-

q q
q

( 3
√

2, 3
√

4)

( 3
√

4, 3
√

2)

(0, 0)

x

y

pq q
q

c c
c

Din figură putem observa că explicitarea este imposibilă ı̂n punctele (0, 0)
şi ( 3
√

4, 3
√

2).

În cele ce urmează vom prezenta o aplicaţie a teoremei 3.7.2.
Aplicaţie. Fie un interval K ⊆ R şi fie f : K → R, f ∈ C1(K) şi

y0 ∈ K̊ a.̂ı. f ′(y0) 6= 0. Definim atunci F : R×K → R, F (x, y) = x− f(y).
Fie x0 = f(y0); atunci ŝınt ı̂ndeplinite condiţiile din teorema 3.7.2 şi deci
există intervalele I, J ⊆ R, x0 ∈ I̊ , y0 ∈ J̊ , I × J ⊆ R × K şi o funcţie
ϕ : I → J derivabilă a.̂ı. {(x, y) ∈ I × J : x = f(y)} = {(x, ϕ(x)) : x ∈ I}
şi ϕ′(x) =

1

f ′(ϕ(x))
. Putem constata uşor că (f ◦ ϕ)(x) = x, ∀x ∈ I şi că

(ϕ ◦ f)(y) = y, ∀y ∈ ϕ(I). Rezultă că ϕ este inversă a funcţiei f local pe o
vecinătate a lui y0 şi obţinem formula de derivare a inversei unei funcţii de o
variabilă.

Încheiem acest paragraf cu două teoreme care extind rezultatul din 3.7.2
la cazul funcţiilor scalare de mai multe variabile şi respectiv la cazul funcţiilor
vectoriale de mai multe variabile.

3.7.5 Teoremă. Fie F : D ⊆ Rk × R → R şi x0 = (x0
1, ..., x

0
k), y

0 ∈
R, (x0, y0) ∈ D a.̂ı. să fie verificate următoarele condiţii:

1). F (x0, y0) = 0,
2). F ∈ C1(D),

3).
∂F

∂y
(x0, y0) 6= 0.

Atunci există două mulţimi deschise I ⊆ Rk, J ⊆ R cu (x0, y0) ∈ I × J ⊆
D şi există o funcţie ϕ : I → J cu proprietăţile:

a). {(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I},
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b). ϕ este de clasă C1 pe I şi, ∀x = (x1, ..., xk) ∈ I, ∀i = 1, ..., n,

∂ϕ

∂xi

(x) = −

∂F

∂xi

(x, ϕ(x))

∂F

∂y
(x, ϕ(x))

.

3.7.6 Teoremă. Fie F : D ⊆ Rk × Rl → Rl, F = (F1, ..., Fl) şi x0 =
(x0

1, ..., x
0
k) ∈ Rk, y0 = (y0

1, ..., y
0
l ) ∈ Rl, (x0, y0) ∈ D, aşa fel ı̂ncât să fie

verificate următoarele condiţii:

1). F (x0, y0) = 0,

2). F ∈ C1(D),

3).
D(F1, ..., Fl)

D(y1, ..., yl)
(x0, y0) 6= 0.

Atunci există două mulţimi deschise I ⊆ Rk, J ⊆ Rl cu (x0, y0) ∈ I×J ⊆
D şi există o funcţie

ϕ = (ϕ1, ..., ϕl) : I → J cu proprietăţile:

a). {(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I},
b). ϕ este de clasă C1 pe I şi, ∀x = (x1, ..., xk) ∈ I, ∀i = 1, ..., k,

∂ϕ1

∂xi

(x) = −

D(F1, F2, ..., Fl)

D(xi, y2, ..., yl)
(x, ϕ(x))

D(F1, ..., Fl)

D(y1, ..., yl)
(x, ϕ(x))

· · · · · · · · ·

∂ϕl

∂xi

(x) = −

D(F1, ..., Fl−1, Fl)

D(y1, ..., yl−1, xi)
(x, ϕ(x))

D(F1, ..., Fl)

D(y1, ..., yl)
(x, ϕ(x))

Demonstraţie. Vom schiţa demonstraţia teoremei; demonstraţia este
asemănătoare demonstraţiei II a teoremei 3.7.2; ea se bazează pe teorema de
inversare locală (teorema 3.6.7).

Fie f : D ⊆ Rk × Rl → Rk × Rl, f(x, y) = (x, F (x, y)), oricare ar fi
(x, y) = (x1, · · · , xk, y1, · · · , yl) ∈ D; evident f ∈ C1(D), f(x, y) =

= (x1, · · · , xk, F1(x1, · · · , xk, y1, · · · , yl), · · · , Fl(x1, · · · , xk, y1, · · · , yl))
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şi deci

Jf (x, y) =



1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 1 0 · · · 0

∂F1

∂x1

· · · ∂F1

∂xk

∂F1

∂y1

· · · ∂F1

∂yl

· · · · · · · · · · · · · · · · · ·
∂Fl

∂x1

· · · ∂Fl

∂xk

∂Fl

∂y1

· · · ∂Fl

∂yl


(k+l)×(k+l)

Rezultă că detJf (x, y) =
D(F1, · · · , Fl)

D(y1, · · · , yl)
(x, y). Din ipoteză detJf (x

0, y0) 6= 0

şi deci df(x0, y0) : Rk+l → Rk+l este o bijecţie.
Teorema de inversare locală ne asigură că există un deschis U ⊆ Rk+l

astfel ı̂ncât (x0, y0) ∈ U ⊆ D, V = f(U) este deschis ı̂n Rk+l şi f este
difeomorfism ı̂ntre U şi V ; putem presupune fără a restrânge generalitatea
că U = I ′ × J , unde I ′ ⊆ Rk, J ⊆ Rl sunt mulţimi deschise.

Deoarece f(x0, y0) = (x0, 0) ∈ V , există mulţimile deschise I1 ⊆ I ⊆ Rk şi
J1 ⊆ Rl astfel ı̂ncât (x0, 0) ∈ I1×J1 ⊆ V de unde (x0, y0) ∈ f−1(I1×J1) ⊆ U .

Funcţia f fiind continuă, f−1(I1×J1) este mulţime deschisă şi deci există
doi deschişi I ⊆ I1 ⊆ Rk, J ′ ⊆ Rl astfel ı̂ncât

(x0, y0) ∈ I × J ′ ⊆ f−1(I1 × J1) ⊆ U = I ′ × J ;

deci (x0, y0) ∈ I × J ⊆ I1 × J ⊆ I ′ × J = D.
Fie pl : Rk×Rl → Rl, pl(x, y) = y, ∀(x, y) ∈ Rk×Rl ( proiecţia pe Rl); pl

este operator liniar şi deci este diferenţiabil.
Definim ϕ : I → Rl prin ϕ(x) = pl(f

−1(x, 0)),∀x ∈ I.
Oricare ar fi x ∈ I, (x, 0) ∈ I × J1 ⊆ I1 × J1 ⊆ V şi deci f−1(x, 0) ∈ U =

I ′ × J ; astfel ϕ(x) = pl(f
−1(x, 0)) ∈ J şi deci ϕ : I → J .

În plus, dacă y = ϕ(x), atunci (x, y) = f−1(x, 0), de unde F (x, y) = 0.
Rezultă imediat că {(x, y) ∈ I × J : F (x, y) = 0} = {(x, ϕ(x)) : x ∈ I}.

ϕ este compunere de trei funcţii diferenţiabile (ϕ = pl ◦ f−1 ◦ g, unde g :
I → I×J1, g(x) = (x, 0)) şi deci ϕ este diferenţiabilă. Dacă ϕ = (ϕ1, · · · , ϕl)
atunci, oricare ar fi x ∈ I,

F1(x1, · · · , xk, ϕ1(x1, · · · , xk), · · · , ϕl(x1, · · · , xk)) = 0
· · · · · · · · ·
Fl(x1, · · · , xk, ϕ1(x1, · · · , xk), · · · , ϕl(x1, · · · , xk)) = 0
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Fie i ∈ {1, · · · , k}; derivând ı̂n relaţiile de mai sus după xi obţinem
∂F1

∂xi

+
∂F1

∂y1

· ∂ϕ1

∂xi

+ · · · ∂F1

∂yl

· ∂ϕl

∂xi

= 0

· · · · · · · · ·
∂Fl

∂xi

+
∂Fl

∂y1

· ∂ϕ1

∂xi

+ · · ·+ ∂Fl

∂yl

· ∂ϕl

∂xi

= 0

sau


∂Fl

∂y1

· ∂ϕ1

∂xi

+ · · ·+ ∂F1

∂yl

· ∂ϕl

∂xi

= −∂F1

∂xi

· · · · · · · · ·
∂Fl

∂y1

· ∂ϕ1

∂xi

+ · · ·+ ∂Fl

∂yl

· ∂ϕl

∂xi

= −∂Fl

∂xi

Acesta este un sistem liniar de l ecuaţii cu l necunoscute:
∂ϕ1

∂xi

, · · · ,
∂ϕl

∂xi

.

Determinantul sitemului este

D(F1, · · · , Fl)

D(y1, · · · , yl)
(x, ϕ(x)) = det (Jf (x, ϕ(x))) .

Să remarcăm că f : U → V este difeomorfism şi deci, oricare ar fi (x, ϕ(x)) ∈
I × J ⊆ I ′ × J = U, df(x, ϕ(x)) : Rk+l → Rk+l este o bijecţie (vezi teorema
3.6.5) ceea ce antrenează că Jf (x, ϕ(x)) este nesingulară.

Rezultă că sistemul de mai sus este compatibil şi determinat iar soluţia
sa este dată de 

∂ϕ1

∂xi

(x) = −

D(F1, F2, ..., Fl)

D(xi, y2, ..., yl)
(x, ϕ(x))

D(F1, ..., Fl)

D(y1, ..., yl)
(x, ϕ(x))

· · · · · · · · ·

∂ϕl

∂xi

(x) = −

D(F1, ..., Fl−1, Fl)

D(y1, ..., yl−1, xi)
(x, ϕ(x))

D(F1, ..., Fl)

D(y1, ..., yl)
(x, ϕ(x))

.
�



Capitolul 3

Diferenţiabilitatea funcţiilor de
mai multe variabile

3.8 Extreme condiţionate

3.8.1 Definiţie. Fie f : A ⊆ Rk → R, l < k, g1, ..., gl : A → R; considerăm
mulţimea F = {x ∈ A : g1(x) = 0, ..., gl(x) = 0} ⊆ A.

Un punct a ∈ F se numeşte punct de minim local condiţionat pentru
f ı̂n raport cu legăturile date de funcţiile g1, ..., gl dacă există o vecinătate a
sa V ∈ V(a) a.̂ı. f(x) ≥ f(a),∀x ∈ F ∩ V .

Un punct a ∈ F se numeşte punct de maxim local condiţionat pentru
f ı̂n raport cu legăturile date de funcţiile g1, ..., gl dacă există o vecinătate a
sa V ∈ V(a) a.̂ı. f(x) ≤ f(a),∀x ∈ F ∩ V .

Punctele de minim local condiţionat sau de maxim local condiţionat se
numesc puncte de extrem local condiţionat sau puncte de extrem
local cu legături (condiţiile sau legăturile fiind date de relaţiile gi(x) =
0, i = 1, ..., l). Dacă nu este pericol de confuzie, vom mai spune prescurtat
că un astfel de punct este un punct de extrem condiţionat pentru f .

3.8.2 Observaţii. 1). Punctele de extrem local condiţionat pentru f ŝınt
puncte de extrem obişnuite pentru restricţia funcţiei f la mulţimea F , f |

F
.

Cu toate acestea nu putem aplica teoria dezvoltată mai sus pentru a găsi
aceste puncte. Reamintim că am căutat punctele de extrem ale unei funcţii
printre punctele critice interioare mulţimii de definiţie a funcţiei. Este ı̂nsă
posibil ca mulţimea F să nu aibă nici-un punct interior.

123
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De exemplu, fie f, g : R2 → R, f(x, y) = x2 + y2, g(x, y) = x + y −
1,∀(x, y) ∈ R2. Atunci F = {(x, y) ∈ R2 : x + y − 1 = 0} = {(x, 1− x) : x ∈
R} reprezintă o dreaptă ı̂n R2 şi deci F nu are puncte interioare.

-

	

6
z

y

x
(1

2
, 1

2
)

F

f |
F
(x, 1− x) = 2x2 − 2x + 1,∀x ∈ R, şi deci are un punct de minim local

ı̂n punctul (1
2
, 1

2
) ∈ F ; rezultă că punctul (1

2
, 1

2
) este un punct de minim local

condiţionat pentru funcţia f . Remarcăm că funcţia f are un minim absolut
pe R2 ı̂n (0, 0).

2). Aşa cum am observat ı̂n exemplul de mai sus, dacă sistemul

(C)


g1(x1, ..., xk) = 0
. . .
gl(x1, ..., xk) = 0

s-ar putea rezolva şi deci am determina l dintre numerele x1, ..., xk funcţie
de celelalte k − l atunci, ı̂nlocuindu-le, funcţia f ar rămı̂ne funcţie de k − l
variabile independente (fără legături) şi punctele de extrem s-ar putea deter-
mina prin metoda expusă ı̂n secţiunea precedentă. În general acest lucru nu
se poate face explicit ı̂nsă, dacă g = (g1, ..., gl) : A ⊆ Rk → Rl este o funcţie
de clasă C1 pe A şi rangul matricii jacobiene Jg ı̂ntr-un punct a ∈ Å este egal
cu l - numărul condiţiilor impuse - atunci sistemul de mai sus admite local
(pe o vecinătate a punctului a) o soluţie; deci l dintre variabilele x1, ..., xk

ŝınt funcţii (chiar funcţii diferenţiabile !) de celelalte k−l. În cele ce urmează
vom presupune că aceste condiţii ŝınt ı̂ndeplinite şi ne propunem să găsim
metode specifice de obţinere a punctelor de extrem condiţionat pentru f .

Următoarea teoremă prezintă o condiţie necesară pentru ca un punct să
fie punct de extrem local condiţionat.

3.8.3 Teoremă. Fie D ⊆ Rk o mulţime deschisă, fie l < k şi funcţiile
f, g1, ..., gl : D → R de clasă C1 pe D; fie F = {x ∈ D : g1(x) = 0, ..., gl(x) =



3.8 Extreme condiţionate 125

0} şi a ∈ F un punct de extrem local condiţionat pentru f . Atunci există l
numere reale λ1, ..., λl a.̂ı.

∇f(a) = λ1 · ∇g1(a) + ... + λl · ∇gl(a).

Demonstraţie. Vom schiţa demonstraţia teoremei ı̂n cazul l = 1. Pre-
supunem deci că f, g : D → R, f, g ∈ C1(D), F = {x ∈ D : g(x) = 0} şi
a ∈ F un punct de minim local pentru f condiţionat de g; există atunci o
vecinătate V ⊆ D a sa a.̂ı. f(x) ≥ f(a),∀x ∈ V ∩ F .

Din observaţia precedentă vom presupune că rang(Jg(a)) = 1. Deoarece

Jg(a) =
(

∂g
∂x1

(a) · · · ∂g
∂xk

(a)
)

1×k
aceasta antrenează că una dintre derivatele

parţiale din matricea jacobiană este nenulă. Vom presupune că ∂g
∂xk

(a) 6= 0.

Putem atunci aplica atunci teorema 3.7.5 (varianta scalară a funcţiei de mai
multe variabile definită implicit). Există deci deschişii I ⊆ Rk−1, J ⊆ R a.̂ı.
(ā, ak) = ((a1, · · · , ak−1), ak) ∈ I × J ⊆ V ⊆ D şi există funcţia ϕ : I → J
cu proprietăţile:

a). {(x̄, xk) = (x1, · · · , xk−1, xk) ∈ I × J : g(x1, · · · , xk) = 0} =
= {(x̄, ϕ(x̄)) : x̄ = (x1, · · ·xk−1) ∈ I} şi

b).
∂ϕ

∂xi

(x̄) = −

∂g

∂xi

(x̄, ϕ(x̄))

∂g

∂xk

(x̄, ϕ(x̄))

,∀x̄ ∈ I, ∀i = 1, · · · , k − 1.

Oricare ar fi x̄ ∈ I, (x̄, ϕ(x̄)) ∈ I × J ⊆ V ⊆ D şi g(x̄, ϕ(x̄)) = 0 deci
(x̄, ϕ(x̄)) ∈ V ∩ F de unde f(x̄, ϕ(x̄)) ≥ f(a). Rezultă că funcţia h : I → R
definită prin h(x̄) = f(x̄, ϕ(x̄)),∀x̄ = (x1, · · · , xk−1) ∈ I are un minim local
ı̂n punctul ā = (a1, · · · , ak−1) ∈ I; deoarece h este diferenţiabilă ı̂n ā rezultă

din teorema lui Fermat (teorema 3.5.2) că


∂h

∂x1

(ā) = 0

· · ·
∂h

∂xk−1

(ā) = 0

, de unde



∂f

∂x1

(a) +
∂f

∂xk

(a) · ∂ϕ

∂x1

(ā) = 0

∂f

∂x2

(a) +
∂f

∂xk

(a) · ∂ϕ

∂x2

(ā) = 0

· · · · · · · · ·
∂f

∂xk−1

(a) +
∂f

∂xk

(a) · ∂ϕ

∂xk−1

(ā) = 0

.
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În relaţiile de mai sus ı̂nlocuim derivatele parţiale ale lui ϕ şi obţinem

∂f

∂x1

(a) =

∂f

∂xk

(a)

∂g

∂xk

(a)
· ∂g

∂x1

(a)

· · · · · · · · ·

∂f

∂xk−1

(a) =

∂f

∂xk

(a)

∂g

∂xk

(a)
· ∂g

∂xk−1

(a)

∂f

∂xk

(a) =

∂f

∂xk

(a)

∂g

∂xk

(a)
· ∂g

∂xk

(a)

Notăm λ =

∂f

∂xk

(a)

∂g

∂xk

(a)

şi aunci ∇f(a) = λ · ∇g(a).
�

3.8.4 Definiţie. Numerele λ1, ..., λl se numesc multiplicatori Lagrange
asociaţi funcţiei f şi legăturilor g1, ..., gl ı̂n punctul critic condiţionat a.

3.8.5 Observaţie. În teorema precedentă

∇f(a) =

(
∂f

∂x1

(a), . . . ,
∂f

∂xk

(a)

)
este gradientul lui f ı̂n a (vezi observaţia 3.2.7, 1)) şi ∇g1(a), ...,∇gl(a) ŝınt
gradienţii funcţiilor g1, ..., gl ı̂n a.

3.8.6 Definiţie. Considerăm sistemul de k + l ecuaţii:

(EC)



∂f

∂x1

(x1, ..., xk) = λ1 ·
∂g1

∂x1

(x1, ..., xk) + ... + λl ·
∂gl

∂x1

(x1, ..., xk)

. . . . . .
∂f

∂xk

(x1, ..., xk) = λ1 ·
∂g1

∂xk

(x1, ..., xk) + ... + λl ·
∂gl

∂xk

(x1, ..., xk)

g1(x1, ..., xk) = 0
. . . . . .

gl(x1, ..., xk) = 0
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cu k + l necunoscute.
Dacă sistemul are o soluţie, (a1, ..., ak, λ1, ..., λl) atunci spunem că punc-

tul a = (a1, ..., al) este un punct critic condiţionat pentru funcţia f ı̂n
raport cu legăturile date de funcţiile g1, ..., gl iar λ1, ..., λl ŝınt multiplicatorii
Lagrange asociaţi funcţiei f şi legăturilor g1, ..., gl ı̂n acest punct.

3.8.7 Observaţie.
Ţin̂ınd cont de definiţia precedentă putem reformula teorema 3.8.3:
Punctele de extrem condiţionat ale funcţiei f ı̂n raport cu legăturile date de
funcţiile g1, ..., gl se găsesc printre punctele critice condiţionate ale funcţiei.

Se observă că o soluţie a sistemului din definiţia precedentă ne pune
la dispoziţie at̂ıt punctele critice condiţionate (potenţiale puncte de extrem
condiţionat) ĉıt şi multiplicatorii Lagrange asociaţi.

3.8.8 Definiţie. Fie λ1, ..., λl multiplicatorii Lagrange asociaţi funcţiei f :
D ⊆ Rk → R şi legăturilor g1, ..., gl : D → R ı̂n punctul critic a =
(a1, ..., ak) ∈ F = {x ∈ D : g1(x) = ... = gl(x) = 0}; funcţia L : D → R,
definită prin L(x) = f(x) − λ1g1(x) − . . . − λlgl(x),∀x ∈ D, se numeşte
funcţia lui Lagrange.

3.8.9 Observaţii. 1). Deoarece (a1, ..., ak, λ1, ..., λl) este o soluţie a sis-
temului din definiţia 3.8.6, remarcăm că a este un punct critic al funcţiei L
şi că L(a) = f(a).

2). Dacă a este un punct de minim local pentru L atunci există o
vecinătate a sa V aşa fel ı̂nĉıt, ∀x ∈ V ∩ A, L(x) ≥ L(a) = f(a); rezultă
că, ∀x ∈ V ∩ F, f(x) = L(x) ≥ L(a) = f(a), ceea ce arată că un asemenea
punct este punct de minim local condiţionat pentru f . La fel se arată că
dacă a este punct de maxim local pentru L atunci el este punct de maxim
local condiţionat pentru f .

Rezultă că este suficient să studiem comportamentul lui L ı̂n punctul critic
a; acest studiu se va face, conform teoremei 3.5.10, analiẑınd comportarea
formei pătratice de k variabile dată de diferenţiala a doua a funcţiei lui

Lagrange ı̂n a, d2L(a) =
k∑

i,j=1

∂2L

∂xi∂xj

(a)dxidxj.

Cele spuse mai sus argumentează următoarea teoremă:

3.8.10 Teoremă. Fie a un punct critic condiţionat al funcţiei f ı̂n raport
cu legăturile date de funcţiile g1, ..., gl şi L funcţia lui Lagrange.
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• Dacă d2L(a) este pozitiv definită a este un punct de minim local condiţionat
pentru f .
• Dacă d2L(a) este negativ definită a este un punct de maxim local condiţionat
pentru f .

3.8.11 Observaţie. Este posibil ca d2L(a) să nu fie pozitiv sau negativ
definită şi totuşi să putem decide asupra punctelor critice condiţionate. Ast-
fel, deoarece (x1, ..., xk) este o soluţie a sistemului (C) (observaţia 3.8.2, 2)),
dxi, i = 1, ..., k nu ŝınt independente. Dacă diferenţiem condiţiile (C) ı̂n
punctul a obţinem sistemul

∂g1

∂x1

(a)dx1 + ... +
∂g1

∂xk

(a)dxk = 0

∂g2

∂x1

(a)dx1 + ... +
∂g2

∂xk

(a)dxk = 0

. . .
∂gl

∂x1

(a)dx1 + ... +
∂gl

∂xk

(a)dxk = 0

Aşa cum am remarcat ı̂n 3.8.2, 2), presupunem tacit că rangul matricii jaco-
biene J(g1,...,gl)(a) este l; atunci sistemul de mai sus permite să determinăm
liniar l dintre dx1, ..., dxk ı̂n funcţie de celelalte k − l diferenţiale şi astfel
d2L(a) este o forma pătratică depinẑınd de k− l variabile; după cum aceasta
este pozitiv definită, negativ definită sau nedefinită, a este un punct de minim
condiţionat, de maxim condiţionat sau nu este punct de extrem condiţionat.

3.8.12 Exemplu. Să se determine distanţa de la punctul (x0, y0) ∈ R2 la
dreapta (d) ax + by + c = 0.

Considerăm funcţia f : R2 → R definită prin f(x, y) = (x−x0)
2+(y−y0)

2;
să determinăm punctul de minim condiţionat de g(x, y) = ax + by + c = 0.
Sistemul (EC) care determină punctele critice condiţionate devine ı̂n acest
caz: 

2(x− x0) = λa
2(y − y0) = λb
ax + by + c = 0

de unde


x1 = x0 +

λa

2

y1 = y0 +
λb

2

şi, ı̂nlocuind ı̂n ecuaţia dreptei, obţinem multiplica-

torul λ =
−2(ax0 + by0 + c)

a2 + b2
şi punctul critic condiţionat (x1, y1).
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Funcţia lui Lagrange este L : R2 → R, L(x, y) = (x − x0)
2 + (y − y0)

2 −
λ(ax + by + c) şi deci d2L(x1, y1) = 2(dx)2 + 2(dy)2 este pozitiv definită.
Rezultă că (x1, y1) este punct de minim condiţionat pentru f .

Valoarea minimului este f(x1, y1) = (x1−x0)
2+(y1−y0)

2 =
λ2(a2 + b2)

4
=

(ax0 + by0 + c)2

a2 + b2
.

Distanţa de la (x0, y0) la dreapta (d) se va obţine extrăĝınd radical din

valoarea minimă a lui f ; se obţine valoarea cunoscută
|ax0 + by0 + c|√

a2 + b2
.


